当前位置: X-MOL 学术Eng. Anal. Bound. Elem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The atomic obstacle size influence on the Hydrogen flow inside a nanochannel: A molecular dynamics approach to predict the fluid atomic arrangements
Engineering Analysis With Boundary Elements ( IF 3.3 ) Pub Date : 2022-07-19 , DOI: 10.1016/j.enganabound.2022.06.027
Aisha M. Alqahtani , S. Mohammad Sajadi , Amnah S. Al‑Johani , Khalid Abdulkhaliq M Alharbi , A. El-Sayed Ahmed , Iskander Tlili

In the current computational work, the atomic behaviour of Hydrogen (H) atoms (as fluid) inside 2D Platinum (Pt) nanochannel (NC) in the presence of obstacles is described using molecular dynamics simulation (MDS) for clinical applications. This simulation method is reported by temperature (T), total energy, profiles of density/velocity/T and interaction energy of simulated compounds. Computationally, a fluid-NC system modelled with Universal Force Field (UFF) and Embedded Atom Model (EAM) potentials (force-fields). MD outputs indicated the potential energy of samples converged to a negative amount after 5 ns. This physical behaviour shows the stability of the defined system at T=300 K. Furthermore, the simulation results show the atomic behaviour of H fluid optimized by atomic obstacle radius optimizing. By using NC with an obstacle, the interaction energy between fluid atoms and NC walls reach -40.44 eV and by this process occur, mass transfer phenomenon optimized for clinical aims.



中文翻译:

原子障碍物尺寸对纳米通道内氢流动的影响:预测流体原子排列的分子动力学方法

在当前的计算工作中,使用分子动力学模拟 (MDS) 描述了在存在障碍物的情况下二维铂 (Pt) 纳米通道 (NC) 内的氢 (H) 原子(作为流体)的原子行为,用于临床应用。该模拟方法通过温度 (T)、总能量、密度/速度/T 曲线和模拟化合物的相互作用能来报告。在计算上,使用通用力场 (UFF) 和嵌入式原子模型 (EAM) 势(力场)建模的流体 NC 系统。MD 输出表明样品的势能在 5 ns 后收敛到负值。这种物理行为显示了定义系统在 T = 300 K 时的稳定性。此外,模拟结果显示了通过原子障碍半径优化优化的 H 流体的原子行为。通过使用带有障碍物的 NC,

更新日期:2022-07-19
down
wechat
bug