当前位置: X-MOL 学术Front. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-Dimensional Virtual Optical Clearing With Cycle-Consistent Generative Adversarial Network
Frontiers in Physics ( IF 3.1 ) Pub Date : 2022-07-19 , DOI: 10.3389/fphy.2022.965095
Jiajia Chen , Zhenhong Du , Ke Si

High-throughput deep tissue imaging and chemical tissue clearing protocols have brought out great promotion in biological research. However, due to uneven transparency introduced by tissue anisotropy in imperfectly cleared tissues, fluorescence imaging based on direct chemical tissue clearing still encounters great challenges, such as image blurring, low contrast, artifacts and so on. Here we reported a three-dimensional virtual optical clearing method based on unsupervised cycle-consistent generative adversarial network, termed 3D-VoCycleGAN, to digitally improve image quality and tissue transparency of biological samples. We demonstrated the good image deblurring and denoising capability of our method on imperfectly cleared mouse brain and kidney tissues. With 3D-VoCycleGAN prediction, the signal-to-background ratio (SBR) of images in imperfectly cleared brain tissue areas also showed above 40% improvement. Compared to other deconvolution methods, our method could evidently eliminate the tissue opaqueness and restore the image quality of the larger 3D images deep inside the imperfect cleared biological tissues with higher efficiency. And after virtually cleared, the transparency and clearing depth of mouse kidney tissues were increased by up to 30%. To our knowledge, it is the first interdisciplinary application of the CycleGAN deep learning model in the 3D fluorescence imaging and tissue clearing fields, promoting the development of high-throughput volumetric fluorescence imaging and deep learning techniques.



中文翻译:

具有周期一致生成对抗网络的三维虚拟光学清除

高通量深层组织成像和化学组织清除方案在生物学研究中带来了巨大的推动作用。然而,由于组织各向异性在未完全清除的组织中引入了不均匀的透明度,基于直接化学组织清除的荧光成像仍面临图像模糊、对比度低、伪影等巨大挑战。在这里,我们报告了一种基于无监督循环一致生成对抗网络的三维虚拟光学清除方法,称为 3D-VoCycleGAN,以数字方式提高生物样本的图像质量和组织透明度。我们展示了我们的方法对未完全清除的小鼠大脑和肾脏组织的良好图像去模糊和去噪能力。使用 3D-VoCycleGAN 预测,在不完全清除的脑组织区域中,图像的信背景比 (SBR) 也显示出 40% 以上的改善。与其他反卷积方法相比,我们的方法可以明显消除组织不透明性,并以更高的效率恢复不完美清除的生物组织深处的较大 3D 图像的图像质量。并且经过虚拟清除后,小鼠肾脏组织的透明度和清除深度增加了高达30%。据我们所知,这是 CycleGAN 深度学习模型在 3D 荧光成像和组织清除领域的首次跨学科应用,推动了高通量体积荧光成像和深度学习技术的发展。我们的方法可以明显消除组织不透明性,并以更高的效率恢复不完美清除的生物组织深处的较大 3D 图像的图像质量。并且经过虚拟清除后,小鼠肾脏组织的透明度和清除深度增加了高达30%。据我们所知,这是 CycleGAN 深度学习模型在 3D 荧光成像和组织清除领域的首次跨学科应用,推动了高通量体积荧光成像和深度学习技术的发展。我们的方法可以明显消除组织不透明性,并以更高的效率恢复不完美清除的生物组织深处的较大 3D 图像的图像质量。并且经过虚拟清除后,小鼠肾脏组织的透明度和清除深度增加了高达30%。据我们所知,这是 CycleGAN 深度学习模型在 3D 荧光成像和组织清除领域的首次跨学科应用,推动了高通量体积荧光成像和深度学习技术的发展。小鼠肾脏组织的透明度和清除深度提高了 30%。据我们所知,这是 CycleGAN 深度学习模型在 3D 荧光成像和组织清除领域的首次跨学科应用,推动了高通量体积荧光成像和深度学习技术的发展。小鼠肾脏组织的透明度和清除深度提高了 30%。据我们所知,这是 CycleGAN 深度学习模型在 3D 荧光成像和组织清除领域的首次跨学科应用,推动了高通量体积荧光成像和深度学习技术的发展。

更新日期:2022-07-19
down
wechat
bug