当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions
Light: Science & Applications ( IF 19.4 ) Pub Date : 2022-07-13 , DOI: 10.1038/s41377-022-00914-5
Zhi Li 1 , Yongguang Xiao 2 , Fu Liu 3 , Xiangyu Yan 2 , Daotong You 2 , Kaiwei Li 2 , Lixi Zeng 1 , Mingshan Zhu 1 , Gaozhi Xiao 4 , Jacques Albert 3 , Tuan Guo 2, 5
Affiliation  

In situ and continuous monitoring of thermal effects is essential for understanding photo-induced catalytic processes at catalyst’s surfaces. However, existing techniques are largely unable to capture the rapidly changing temperatures occurring in sub-μm layers at liquid-solid interfaces exposed to light. To address this, a sensing system based on a gold-coated conventional single-mode optical fiber with a tilted fiber Bragg grating inscribed in the fiber core is proposed and demonstrated. The spectral transmission from these devices is made up of a dense comb of narrowband resonances that can differentiate between localized temperatures rapid changes at the catalyst’s surface and those of the environment. By using the gold coating of the fiber as an electrode in an electrochemical reactor and exposing it to light, thermal effects in photo-induced catalysis at the interface can be decoded with a temperature resolution of 0.1 °C and a temporal resolution of 0.1 sec, without perturbing the catalytic operation that is measured simultaneously. As a demonstration, stable and reproducible correlations between the light-to-heat conversion and catalytic activities over time were measured for two different catalysis processes (linear and nonlinear). These kinds of sensing applications are ideally suited to the fundamental qualities of optical fiber sensors, such as their compact size, flexible shape, and remote measurement capability, thereby opening the way for various thermal monitoring in hard-to-reach spaces and rapid catalytic reaction processes.



中文翻译:

光电催化反应过程中纳米级和快速温度变化的操作光纤监测

热效应的原位和连续监测对于理解催化剂表面的光诱导催化过程至关重要。然而,现有技术在很大程度上无法捕捉到暴露在光线下的液固界面的亚微米层中发生的快速变化的温度。为了解决这个问题,提出并演示了一种基于镀金传统单模光纤的传感系统,该光纤具有刻在光纤纤芯中的倾斜光纤布拉格光栅。这些设备的光谱传输由密集的窄带共振梳组成,可以区分催化剂表面的局部温度快速变化和环境温度的快速变化。通过使用纤维的金涂层作为电化学反应器中的电极并将其暴露在光线下,界面处光致催化中的热效应可以以 0.1 °C 的温度分辨率和 0.1 秒的时间分辨率进行解码,而不会干扰同时测量的催化操作。作为证明,测量了两种不同催化过程(线性和非线性)的光热转化和催化活性之间的稳定和可重复的相关性。这些传感应用非常适合光纤传感器的基本特性,例如其紧凑的尺寸、灵活的形状和远程测量能力,从而为难以到达的空间中的各种热监测和快速催化反应开辟了道路过程。1 秒,不干扰同时测量的催化操作。作为证明,测量了两种不同催化过程(线性和非线性)的光热转化和催化活性之间的稳定和可重复的相关性。这些传感应用非常适合光纤传感器的基本特性,例如其紧凑的尺寸、灵活的形状和远程测量能力,从而为难以到达的空间中的各种热监测和快速催化反应开辟了道路过程。1 秒,不干扰同时测量的催化操作。作为证明,测量了两种不同催化过程(线性和非线性)的光热转化和催化活性之间的稳定和可重复的相关性。这些传感应用非常适合光纤传感器的基本特性,例如其紧凑的尺寸、灵活的形状和远程测量能力,从而为难以到达的空间中的各种热监测和快速催化反应开辟了道路过程。对于两种不同的催化过程(线性和非线性),测量了光热转化和催化活性之间的稳定和可重复的相关性。这些传感应用非常适合光纤传感器的基本特性,例如其紧凑的尺寸、灵活的形状和远程测量能力,从而为难以到达的空间中的各种热监测和快速催化反应开辟了道路过程。对于两种不同的催化过程(线性和非线性),测量了光热转化和催化活性之间的稳定和可重复的相关性。这些传感应用非常适合光纤传感器的基本特性,例如其紧凑的尺寸、灵活的形状和远程测量能力,从而为难以到达的空间中的各种热监测和快速催化反应开辟了道路过程。

更新日期:2022-07-13
down
wechat
bug