当前位置: X-MOL 学术Environ. Sci.: Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synchrotron radiation-based analysis of interactions at the nano–bio interface
Environmental Science: Nano ( IF 7.3 ) Pub Date : 2022-07-13 , DOI: 10.1039/d2en00408a
Saima Hameed 1 , Didar Baimanov 1, 2, 3, 4 , Xiumin Li 1 , Ke Liu 1 , Liming Wang 1, 2, 3
Affiliation  

It is essential to study nano–bio interactions for nanosafety evaluation and nanomedicine development, but limited information is available on nano–bio interfacial interactions and their underlying mechanisms. The interaction of nanomaterials (NMs) with the biological system is complex and involves various physicochemical events at different levels. The conventional methods fail to study the in situ behavior and fate of NMs and cannot acquire enough physicochemical information. Advanced synchrotron radiation (SR)-based techniques can help systematically understand nano–bio interactions, i.e., a series of physical and chemical reactions at the biomolecular surface that dictate the fate of NMs in a biological system. It has been established that biomolecules rapidly adsorb on the surface of administered NMs and form a biomolecular corona. The adsorbed biomolecular corona changes the surface properties of NMs that may interfere with their intended functionalities. In this review, we incorporate SR-based methodologies to obtain insight into the detailed mechanism of nano–bio interactions. A deeper understanding of nano–bio interactions can help better investigate biological responses and promote the rational design of efficient nanomedicine. These techniques have broad applications in other fields of the life sciences and the environmental sciences.

中文翻译:

基于同步辐射的纳米-生物界面相互作用分析

研究纳米-生物相互作用对于纳米安全性评估和纳米药物开发至关重要,但关于纳米-生物界面相互作用及其潜在机制的信息有限。纳米材料(NMs)与生物系统的相互作用是复杂的,涉及不同层次的各种物理化学事件。传统方法无法研究NMs的原位行为和命运,也无法获得足够的物理化学信息。先进的基于同步辐射 (SR) 的技术可以帮助系统地了解纳米生物相互作用,,生物分子表面的一系列物理和化学反应决定了生物系统中 NM 的命运。已经确定生物分子迅速吸附在施用的 NM 的表面并形成生物分子电晕。吸附的生物分子电晕改变了 NM 的表面性质,这可能会干扰它们的预期功能。在这篇综述中,我们结合了基于 SR 的方法,以深入了解纳米生物相互作用的详细机制。对纳米生物相互作用的更深入了解有助于更好地研究生物反应并促进高效纳米药物的合理设计。这些技术在生命科学和环境科学的其他领域具有广泛的应用。
更新日期:2022-07-13
down
wechat
bug