当前位置: X-MOL 学术Propellants Explos. Pyrotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on Tensile Mechanical Properties of GAP/CL-20/HMX Propellant
Propellants, Explosives, Pyrotechnics ( IF 1.8 ) Pub Date : 2022-07-11 , DOI: 10.1002/prep.202200053
GuangLong Zhang 1 , Xiangyang Liu 1 , Jinshang Zhang 1 , Muchen Li 1 , Xu Zhang 1 , Ningfei Wang 1 , Xiao Hou 1
Affiliation  

To study the tensile properties of GAP/CL-20/HMX (GCH) propellant, a new generation high energy solid propellant, uniaxial tensile test and dynamic mechanical analysis (DMA) test were performed at different temperatures (233.15–333.15 K) and strain rates (0.000476–0.9524 s−1). The experimental results show that, unlike Hydroxyl-terminated Polybutadiene (HTPB) and Nitrate Ester Plasticized Polyether (NEPE) propellants, GCH propellant have special arc section in the initial tensile stage at room temperature and high temperature. This phenomenon may be caused by the stretching of the curled molecular chains. The variation of mechanical properties shows that the maximum tensile strength and initial elastic modulus increase with the decrease of temperature and the increase of strain rate. The variation of maximum elongation is complex, which increases with the increase of strain rate at room temperature and high temperature, and first increases then decreases with the increase of strain at low temperature. The constitutive model of the GCH propellant was established by introducing the chain extension and the debonding damage thresholds. Both of which show a linear double logarithmic increasing trend with the increase of strain rate at room and high temperature. The latter shows a linear double logarithmic decrease trend with the increase of strain rate at the low temperature.

中文翻译:

GAP/CL-20/HMX推进剂拉伸力学性能研究

为研究GAP/CL-20/HMX(GCH)推进剂的拉伸性能,对新一代高能固体推进剂进行了不同温度(233.15~333.15 K)和应变下的单轴拉伸试验和动态力学分析(DMA)试验。率 (0.000476–0.9524 s -1)。实验结果表明,与端羟基聚丁二烯(HTPB)和硝酸酯增塑聚醚(NEPE)推进剂不同,GCH推进剂在室温和高温下的初始拉伸阶段具有特殊的弧形截面。这种现象可能是由卷曲分子链的拉伸引起的。力学性能的变化表明最大抗拉强度和初始弹性模量随着温度的降低和应变速率的增加而增加。最大伸长率的变化是复杂的,在室温和高温下随着应变率的增加而增加,在低温下随着应变率的增加先增加后减小。通过引入扩链和脱粘损伤阈值建立了GCH推进剂的本构模型。两者在室温和高温下均随应变率的增加呈线性双对数增加趋势。后者在低温下随着应变率的增加呈线性双对数下降趋势。
更新日期:2022-07-11
down
wechat
bug