当前位置: X-MOL 学术Appl. Comput. Harmon. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Super-resolution wavelets for recovery of arbitrarily close point-masses with arbitrarily small coefficients
Applied and Computational Harmonic Analysis ( IF 2.5 ) Pub Date : 2022-07-11 , DOI: 10.1016/j.acha.2022.07.003
Charles K. Chui

Three families of super-resolution (SR) wavelets Ψv,ng(x), Ψu,n,ms(x) and Ψw,n,mds(x), to be called Gaussian SR (GSR), spline SR (SSR) and dual-spline SR (DSSR) wavelets, respectively, are introduced in this paper for resolving the super-resolution problem of recovering any point-mass h(y)==1Lcδ(yσ), with |σσk|η for k, σ0, and |c|>η for all ,k=1,,L, where η>0 and η>0 are allowed to be arbitrarily small. Let Ψα,n=Ψv,ng, Ψu,n,ms or Ψw,n,mds, with α=v,u or w, respectively, where m=12,1,2, is suppressed. The SR wavelets are designed to have the n-th order of vanishing moments, with Fourier transform of their complex conjugates Ψ¯ˆα,n(x) to possess the following properties: (i) Ψ¯ˆα,n(x)0 for all xR, (ii) maxxΨ¯ˆα,n(x)=Ψ¯ˆα,n(κ)=ξn, where κ2.331122371 and ξ1.449222080 are positive constants independent of n,α and m, and (iii) the widths (or standard deviations) of Ψ¯ˆα,n(x), with center at κ, tends to 0 very fast for large values of α. While the most popular approach to resolve this super-resolution problem is to consider the Fourier transform d(x)==1Lceiσx of h(y) as the “data function” for solving the inverse problem of recovering L, σ1,,σL and c1,,cL of the point-mass d(x), our proposed approach is to consider the “enhanced data function” D(a;α,n):=FΨα,n(a)==1LcΨ¯ˆα,n(aσ), where FΨα,n(a), to be called the search function in this paper, is obtained by taking the continuous wavelet transform (CWT): (WΨα,nd)(t,a)=Ψα,n(yta)d(y)dya of the data function d(x), with Ψα,n as the analysis wavelet, followed by applying wavelet thresholding to “de-noise” the data function d(x), by choosing an appropriate thresholding parameter γ>0, with γ<η×ξn, in order not to remove any of the coefficients c, where =1,,L; and finally by setting t=0. Hence, the enhanced data function D(a;α,n) is at least cleaner than the data function d(x).

In our proposed approach, instead of directly recovering σ1,,σL as in the published literature, we propose a “divide and conquer” strategy: first by applying “bottom-up thresholding” of the search function FΨα,n(a), with thresholding parameter γ>0 close to but not exceeding η×ξn, to separate the set of the local extrema locations a:=κσ of the function FΨα,n(a) in {aR:a0} into disjoint intervals of clusters, with more and smaller intervals and less number of local extrema a in each interval for larger values of α; and secondly, by applying “top-down thresholding” to extract, one-by-one, of all local maxima, followed by all local minima (after a sign change), for each and every cluster. A desired leeway Δ>0 and lower bounds of the choice of the width parameter α are derived for the iterative application of top-down thresholding. Extension to Rs for s2 is also studied in this paper. For s=2, we observe that the imagery of the enhanced data function for a single point-mass at (σ1,σ2) where σ1,σ20, resembles that of an “Airy disk” with center at (κ/σ1,κ/σ2) in light microscopy and celestial telescopy of point-masses.



中文翻译:

用于恢复具有任意小系数的任意接近点质量的超分辨率小波

三族超分辨率 (SR) 小波Ψv,nG(X),Ψ,n,s(X)Ψw,n,ds(X),分别称为高斯SR(GSR),样条SR(SSR)和双样条SR(DSSR)小波,用于解决恢复任何点质量的超分辨率问题H(是的)==1大号Cδ(是的-σ), 和|σ-σķ|η为了ķ,σ0, 和|C|>η对所有人,ķ=1,,大号, 在哪里η>0η>0允许任意小。让Ψα,n=Ψv,nG,Ψ,n,s或者Ψw,n,ds, 和α=v,w,分别在哪里=12,1,2,被压制。SR 小波被设计为具有n阶消失矩,并对其复共轭进行傅里叶变换Ψ¯^α,n(X)具备以下性质:(i)Ψ¯^α,n(X)0对所有人XR, (ii)最大限度XΨ¯^α,n(X)=Ψ¯^α,n(κ)=ξn, 在哪里κ2.331122371ξ1.449222080是独立于的正常数n,αm,以及 (iii) 的宽度(或标准偏差)Ψ¯^α,n(X),以κ为中心,对于较大的α值,非常快地趋于 0 。虽然解决这个超分辨率问题最流行的方法是考虑傅里叶变换d(X)==1大号Ce-一世σXH(是的)作为解决恢复L的逆问题的“数据函数” ,σ1,,σ大号C1,,C大号质点的d(X),我们提出的方法是考虑“增强数据功能”D(一个;α,n)=FΨα,n(一个)==1大号CΨ¯^α,n(一个σ), 在哪里FΨα,n(一个),在本文中称为搜索函数,通过连续小波变换(CWT)得到:(WΨα,nd)(,一个)=-Ψα,n(是的-一个)d(是的)d是的一个数据函数d(X), 和Ψα,n作为分析小波,然后应用小波阈值对数据函数进行“去噪”d(X),通过选择适当的阈值参数γ>0, 和γ<η×ξn, 为了不删除任何系数C, 在哪里=1,,大号; 最后通过设置=0. 因此,增强的数据功能D(一个;α,n)至少比数据函数更干净d(X).

在我们提出的方法中,不是直接恢复σ1,,σ大号与已发表的文献一样,我们提出了“分而治之”的策略:首先通过应用搜索​​功能的“自下而上阈值”FΨα,n(一个), 带有阈值参数γ>0接近但不超过η×ξn, 以分离局部极值位置的集合一个=κσ功能的FΨα,n(一个){一个R一个0}成不相交的簇间隔,间隔越来越小,局部极值的数量越来越少一个在每个区间中,对于较大的α值;其次,通过应用“自上而下的阈值”来逐一提取所有局部最大值,然后是所有局部最小值(在符号更改后),对于每个集群。理想的余地Δ>0为自上而下阈值的迭代应用推导出宽度参数α选择的下界。扩展至Rs为了s2本文也进行了研究。为了s=2,我们观察到单个点质量的增强数据函数的图像在(σ1,σ2)在哪里σ1,σ20, 类似于中心在的“艾里斑”(κ/σ1,κ/σ2)在光学显微镜和点质量的天体望远镜中。

更新日期:2022-07-11
down
wechat
bug