当前位置: X-MOL 学术Environ. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nutritional inter-dependencies and a carbazole-dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole
Environmental Microbiology ( IF 5.1 ) Pub Date : 2022-07-07 , DOI: 10.1111/1462-2920.16116
Sotirios Vasileiadis 1 , Chiara Perruchon 1 , Benjamin Scheer 2 , Lorenz Adrian 2, 3 , Nicole Steinbach 4 , Marco Trevisan 5 , Patricia Plaza-Bolaños 6 , Ana Agüera 6 , Antonis Chatzinotas 4, 7, 8 , Dimitrios G Karpouzas 1
Affiliation  

Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ-degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi-omic approach combined with DNA-stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning. SIP and amplicon sequencing analysis of the heavy and light DNA fraction of cultures grown on 13C-labelled versus 12C-TBZ showed that 66% of the 13C-labelled TBZ was assimilated by Sphingomonas. Metagenomic analysis retrieved 18 metagenome-assembled genomes with the dominant belonging to Sphingomonas, Sinobacteriaceae, Bradyrhizobium, Filimonas and Hydrogenophaga. Meta-transcriptomics/-proteomics and non-target mass spectrometry suggested TBZ transformation by Sphingomonas via initial cleavage by a carbazole dioxygenase (car) to thiazole-4-carboxamidine (terminal compound) and catechol or a cleaved benzyl ring derivative, further transformed through an ortho-cleavage (cat) pathway. Microbial co-occurrence and gene expression networks suggested strong interactions between Sphingomonas and a Hydrogenophaga. The latter activated its cobalamin biosynthetic pathway and Sphingomonas its cobalamin salvage pathway to satisfy its B12 auxotrophy. Our findings indicate microbial interactions aligning with the ‘black queen hypothesis’ where Sphingomonas (detoxifier, B12 recipient) and Hydrogenophaga (B12 producer, enjoying detoxification) act as both helpers and beneficiaries.

中文翻译:

营养相互依赖和咔唑双加氧酶是依赖鞘氨醇单胞菌降解杀菌剂噻菌灵的细菌群落的关键要素

噻菌灵 (TBZ) 是一种持久性杀菌剂/驱虫剂,对环境构成严重威胁。我们之前丰富了 TBZ 降解细菌联合体,并提供了鞘氨醇单胞菌参与 TBZ 转化的第一个证据。在这里,使用多组学方法结合 DNA 稳定同位素探测 (SIP),我们验证了鞘氨醇单胞菌的关键降解作用,并确定了控制联合体功能的潜在微生物相互作用。对在13 C 标记和12 C-TBZ上生长的培养物的重链和轻链 DNA 部分进行 SIP 和扩增子测序分析表明,66% 的13 C 标记的 TBZ 被鞘氨醇单胞菌同化. 宏基因组分析检索到 18 个宏基因组组装的基因组,其中主要属于鞘氨醇单胞菌中华杆菌科、缓生根瘤菌丝状单胞菌和嗜氢菌。元转录组学/蛋白质组学和非目标质谱表明 TBZ通过咔唑双加氧酶 ( car )初始裂解被鞘氨醇单胞菌转化为噻唑-4-甲脒(末端化合物)和儿茶酚或裂解的苄环衍生物,进一步转化为邻位切割 ( cat ) 通路。微生物共现和基因表达网络表明微生物之间存在强烈的相互作用鞘氨醇单胞菌Hydrogenophaga。后者激活其钴胺素生物合成途径,鞘氨醇单胞菌激活其钴胺素补救途径以满足其 B12 营养缺陷型。我们的研究结果表明微生物相互作用符合“黑皇后假说”,其中鞘氨醇单胞菌(解毒剂,B12 接受者)和噬氢菌( B12 生产者,享受解毒)既是帮助者又是受益者。
更新日期:2022-07-07
down
wechat
bug