当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoinduced small electron polarons generation and recombination in hematite
npj Computational Materials ( IF 9.7 ) Pub Date : 2022-07-07 , DOI: 10.1038/s41524-022-00814-7
Cheng Cheng , Yonghao Zhu , Zhaohui Zhou , Run Long , Wei-Hai Fang

Polarons generally affect adversely the photochemical and photophysical properties of transition metal oxides. However, the excited-state dynamics of polarons are not fully established to date and thus require an atomistic understanding. We focus on α-Fe2O3 with photoexcitation, electron injection, and heterovalent doping as the small polaron models, and conduct simulations of ab initio adiabatic molecular dynamics (AIMD) and nonadiabatic molecular dynamics (NA-MD). The elaborately designed AIMD simulations show that localization of electron at a single Fe site is an adiabatic and ultrafast process within sub-15 fs. Fe2O3 doping with an electron or a Si and Ti dopant forms a localized electron polaron while photoexcitation forms localized electron and hole polarons simultaneously, leading to diverse electron–hole recombination dynamics. NA-MD simulations demonstrate that recombination of an electron polaron created by doping with a delocalized hole at the valence band maximum of α-Fe2O3 takes place around 5 ps, while recombination between a pair of small electron and hole polarons in photoexcited Fe2O3 delays to about 110 ps owing to weak NA coupling and fast decoherence process. The ultrafast formation of small electron polarons in α-Fe2O3 impedes the accumulation of delocalized holes in the valence band that directly participate in water oxidation at photoanodes. The detrimental effect can be partially circumvented in photoexcited Fe2O3 for slowing electron–hole recombination despite polarons may retain low charge mobility. These findings provide a fundamental understanding of the excited-state dynamics of small electron polaron in α-Fe2O3 and may help design efficient transition metal oxides photoanodes.



中文翻译:

赤铁矿中光致小电子极化子的产生和复合

极化子通常不利地影响过渡金属氧化物的光化学和光物理性质。然而,迄今为止,极化子的激发态动力学尚未完全建立,因此需要原子理解。我们专注于以光激发、电子注入和异价掺杂作为小极化子模型的α-Fe 2 O 3,并进行从头算绝热分子动力学(AIMD)和非绝热分子动力学(NA-MD)的模拟。精心设计的 AIMD 模拟表明,电子在单个 Fe 位点的定位是低于 15 fs 的绝热和超快过程。铁2 O 3掺杂电子或Si和Ti掺杂剂形成局域电子极化子,而光激发同时形成局域电子和空穴极化子,导致不同的电子-空穴复合动力学。NA-MD 模拟表明,通过在 α-Fe 2 O 3的价带最大值处掺杂离域空穴而产生的电子极化子的复合发生在 5 ps 左右,而在光激发的 Fe 中一对小电子和空穴极化子之间的复合由于弱NA耦合和快速退相干过程,2 O 3延迟至约110 ps。α-Fe 2 O 3中小电子极化子的超快形成阻碍价带中离域空穴的积累,这些空穴直接参与光阳极处的水氧化。尽管极化子可能保持低电荷迁移率,但在光激发的 Fe 2 O 3中可以部分规避有害影响,以减缓电子-空穴复合。这些发现提供了对 α-Fe 2 O 3中小电子极化子的激发态动力学的基本理解,并可能有助于设计高效的过渡金属氧化物光阳极。

更新日期:2022-07-07
down
wechat
bug