当前位置: X-MOL 学术Appl. Mathmat. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of membrane polarization, steric repulsion and ion-solvent interactions on electroosmosis through a conical nanopore
Applied Mathematical Modelling ( IF 5 ) Pub Date : 2022-07-06 , DOI: 10.1016/j.apm.2022.06.038
Doyel Pandey , Somnath Bhattacharyya

The impact of solid polarization of a dielectric membrane on ion transport in a conical nanopore drilled through a membrane is studied by considering ions as finite-sized dielectric charged spheres. The excess polarization of the hydrated ions creates a dielectric decrement. A mean-field-based approach is adopted by modifying the Nernst-Planck equation to incorporate the ion steric interactions, the Born force, and the dielectrophoretic force arising due to the spatial variation of electrolyte permittivity. The viscosity of the medium is considered to vary with the local ionic concentration through the Bachelor-Green equation, which leads to a reduction in the mobility of ions near a charged surface. Governing equations are solved numerically through the control volume method along with a pressure-correction-based iterative algorithm. The solid polarization of the membrane, which is often neglected in existing studies, is found to have a strong impact on the volume flux, conductance, selectivity, and ion current rectification in the conical nanopore. The ion saturation in the vicinity of the charged surface, as governed by the present modified model, creates a pronounced alteration in the electrokinetics compared to that predicted by the standard Poisson-Nernst-Planck (PNP-model) based on the point charge consideration of ions. This discrepancy due to ion steric repulsion and ion-solvent interactions is pronounced at a higher ionic concentration as well as a highly polarizable surface. A close agreement between the predictions of the present modified model and the existing experimental data, compared with that of the standard PNP model, is encouraging. The present modified model provides an accurate analysis of the electroosmotic flow and ion transport in a dielectric charged conical nanopore beyond the low charge density and dilute solution limits.



中文翻译:

膜极化、空间排斥和离子溶剂相互作用对锥形纳米孔电渗的影响

通过将离子视为有限尺寸的介电带电球体,研究了介电膜的固体极化对穿过膜的锥形纳米孔中离子传输的影响。水合离子的过度极化产生介电衰减。通过修改 Nernst-Planck 方程,采用基于平均场的方法,将离子空间相互作用、玻恩力和由于电解质介电常数的空间变化而产生的介电泳力结合起来。通过Bachelor-Green方程,介质的粘度被认为随着局部离子浓度而变化,这导致带电表面附近离子的迁移率降低。通过控制体积法和基于压力校正的迭代算法对控制方程进行数值求解。在现有研究中经常被忽视的膜的固体极化被发现对锥形纳米孔中的体积通量、电导、选择性和离子电流整流具有强烈影响。与基于点电荷考虑的标准 Poisson-Nernst-Planck(PNP 模型)预测的相比,由本修改模型控制的带电表面附近的离子饱和度在电动力学中产生了明显的变化离子。由于离子空间排斥和离子-溶剂相互作用导致的这种差异在较高的离子浓度和高度可极化的表面上很明显。与标准 PNP 模型的预测相比,本修改模型的预测与现有实验数据之间的密切一致性令人鼓舞。本修改后的模型提供了对电渗流和离子传输在介电带电锥形纳米孔中超出低电荷密度和稀溶液限制的准确分析。与基于离子的点电荷考虑的标准 Poisson-Nernst-Planck(PNP 模型)预测的相比,在本修改模型的控制下,产生了明显的电动力学变化。由于离子空间排斥和离子-溶剂相互作用导致的这种差异在较高的离子浓度和高度可极化的表面上很明显。与标准 PNP 模型的预测相比,本修改模型的预测与现有实验数据之间的密切一致性令人鼓舞。本修改后的模型提供了对电渗流和离子传输在介电带电锥形纳米孔中超出低电荷密度和稀溶液限制的准确分析。与基于离子的点电荷考虑的标准 Poisson-Nernst-Planck(PNP 模型)预测的相比,在本修改模型的控制下,产生了明显的电动力学变化。由于离子空间排斥和离子-溶剂相互作用导致的这种差异在较高的离子浓度和高度可极化的表面上很明显。与标准 PNP 模型的预测相比,本修改模型的预测与现有实验数据之间的密切一致性令人鼓舞。本修改后的模型提供了对电渗流和离子传输在介电带电锥形纳米孔中超出低电荷密度和稀溶液限制的准确分析。与基于离子的点电荷考虑的标准 Poisson-Nernst-Planck(PNP 模型)预测的相比,产生了明显的电动力学变化。由于离子空间排斥和离子-溶剂相互作用导致的这种差异在较高的离子浓度和高度可极化的表面上很明显。与标准 PNP 模型的预测相比,本修改模型的预测与现有实验数据之间的密切一致性令人鼓舞。本修改后的模型提供了对电渗流和离子传输在介电带电锥形纳米孔中超出低电荷密度和稀溶液限制的准确分析。与基于离子的点电荷考虑的标准 Poisson-Nernst-Planck(PNP 模型)预测的相比,产生了明显的电动力学变化。由于离子空间排斥和离子-溶剂相互作用导致的这种差异在较高的离子浓度和高度可极化的表面上很明显。与标准 PNP 模型的预测相比,本修改模型的预测与现有实验数据之间的密切一致性令人鼓舞。本修改后的模型提供了对电渗流和离子传输在介电带电锥形纳米孔中超出低电荷密度和稀溶液限制的准确分析。由于离子空间排斥和离子-溶剂相互作用导致的这种差异在较高的离子浓度和高度可极化的表面上很明显。与标准 PNP 模型的预测相比,本修改模型的预测与现有实验数据之间的密切一致性令人鼓舞。本修改后的模型提供了对电渗流和离子传输在介电带电锥形纳米孔中超出低电荷密度和稀溶液限制的准确分析。由于离子空间排斥和离子-溶剂相互作用导致的这种差异在较高的离子浓度和高度可极化的表面上很明显。与标准 PNP 模型的预测相比,本修改模型的预测与现有实验数据之间的密切一致性令人鼓舞。本修改后的模型提供了对电渗流和离子传输在介电带电锥形纳米孔中超出低电荷密度和稀溶液限制的准确分析。

更新日期:2022-07-06
down
wechat
bug