当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance analysis and biofuels conversion yield correlations for solar-thermal wood chips pyrolysis reactor using response surface methodology
Case Studies in Thermal Engineering ( IF 6.8 ) Pub Date : 2022-06-23 , DOI: 10.1016/j.csite.2022.102225
Chaouki Ghenai , Ruqiya Abdullah , Ola Al Saidi , Ayesha Al Suwaidi , Oussama Rejeb , Abrar Inayat

The development of innovative sustainable methods and strategies for the conversion of biomass and waste materials to clean and alternative fuels using renewable power systems are needed to foster the clean energy transition. The main objective of this study is to optimize the performance of the pyrolysis reactor powered with solar parabolic trough collector (PTC) to maximize the quantity and quality of the biofuels production. The goal is to develop sustainable thermal conversion processes for the conversion of biomass and solid waste to renewable fuels. An integrated Modeling and simulation analysis based on the mass and energy balance of the thermal conversion process of the biomass (wood waste) and response surface methodology (RMS) for the optimization of the biofuel (bio-oil) yields was used in the present study. The effects of three main input factors: biomass volumetric flow rate, solar irradiance and biomass particle diameter on the performance of the PTC pyrolysis reactor were determined. The results show an average monthly bio-oil production of 44.58% by weight. The maximum bio-oil yield through the year occurs in May and June and it is around 58% by weight. Three new correlations for biofuel yields based on the three input factors were developed. The coefficients of determination R2 for the three correlations were between 0.8951 and 0.9986 (0.14–10.49% errors). The perturbation graph of bio-oil conversion yield shows that the most significant input factor is the solar irradiance followed by biomass volumetric flow rate and then the particle diameter. The optimum conditions for bio-oil production (volume flow rate = 0.0058 m3/h; solar irradiance = 918 W/m2, and biomass particle diameter of 8 mm) for the selected pyrolysis reactor are also determined. The results obtained in the course of this study show the benefits of using solar thermal energy for the conversion of biomass and solid waste to renewable and alternative fuels.



中文翻译:

使用响应面法的太阳能-热木片热解反应器的性能分析和生物燃料转化产量相关性

需要开发创新的可持续方法和战略,利用可再生能源系统将生物质和废料转化为清洁和替代燃料,以促进清洁能源转型。本研究的主要目的是优化由太阳能抛物槽收集器 (PTC) 供电的热解反应器的性能,以最大限度地提高生物燃料生产的数量和质量。目标是开发可持续的热转换工艺,将生物质和固体废物转化为可再生燃料。本研究使用基于生物质(木材废料)热转换过程的质量和能量平衡和响应面方法(RMS)的综合建模和模拟分析,用于优化生物燃料(生物油)产量. 确定了三个主要输入因素:生物质体积流量、太阳辐照度和生物质颗粒直径对 PTC 热解反应器性能的影响。结果显示平均每月生物油产量为 44.58%(按重量计)。全年生物油产量最高出现在 5 月和 6 月,约为 58%(按重量计)。基于三个输入因素,开发了三个新的生物燃料产量相关性。决定系数 R 基于三个输入因素,开发了三个新的生物燃料产量相关性。决定系数 R 基于三个输入因素,开发了三个新的生物燃料产量相关性。决定系数 R2三个相关性在 0.8951 和 0.9986 之间(0.14-10.49% 误差)。生物油转化率的摄动图表明,最重要的输入因素是太阳辐照度,其次是生物质体积流量,然后是粒径。还确定了所选热解反应器的生物油生产的最佳条件(体积流量 = 0.0058 m 3 /h;太阳辐照度 = 918 W/m 2 ,生物质颗粒直径为 8 mm)。本研究过程中获得的结果显示了使用太阳能热能将生物质和固体废物转化为可再生和替代燃料的好处。

更新日期:2022-06-23
down
wechat
bug