当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating
Advanced Materials ( IF 29.4 ) Pub Date : 2022-06-24 , DOI: 10.1002/adma.202202666
Weiyin Chen 1 , John Tianci Li 1 , Chang Ge 1, 2 , Zhe Yuan 1 , Wala A Algozeeb 1 , Paul A Advincula 1 , Guanhui Gao 3 , Jinhang Chen 1 , Kexin Ling 1 , Chi Hun Choi 3 , Emily A McHugh 1 , Kevin M Wyss 1 , Duy Xuan Luong 1, 2 , Zhe Wang 1 , Yimo Han 3 , James M Tour 1, 3, 4
Affiliation  

Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well-aligned lattices and strong coupling interactions. However, direct and rapid synthesis of turbostratic materials remains a challenge owing to their thermodynamically metastable properties. Here, a flash Joule heating (FJH) method to achieve bulk synthesis of boron–carbon–nitrogen ternary compounds with turbostratic structures by a kinetically controlled ultrafast cooling process that takes place within milliseconds (103 to 104 K s−1) is reported. Theoretical calculations support the existence of turbostratic structures and provide estimates of the energy barriers with respect to conversion into the corresponding well-aligned counterparts. When using non-carbon conductive additives, a direct synthesis of boron nitride is possible. The turbostratic nature facilitates mechanical exfoliation and more stable dispersions. Accordingly, the addition of flash products to a poly(vinyl alcohol) nanocomposite film coating a copper surface greatly improves the copper's resistance to corrosion in 0.5 m sulfuric acid or 3.5 wt% saline solution. FJH allows the use of bulk materials as reactants and provides a rapid approach to large quantities of the hitherto hard-to-access turbostratic materials.

中文翻译:

闪焦耳加热的透平层硼-碳-氮和氮化硼

二维材料中的涡轮层具有层间错位。缺乏对准扩大了固有的层间距离并削弱了相邻层之间的光学和电子相互作用。这引入了与具有良好排列的晶格和强耦合相互作用的那些结构不同的特性。然而,由于其热力学亚稳态特性,直接快速合成turbostratic材料仍然是一个挑战。在这里,闪焦耳加热 (FJH) 方法通过在毫秒内发生的动力学控制的超快冷却过程(10 3 到 10 4 K s -1) 被报告。理论计算支持涡流层结构的存在,并提供了关于转换成相应良好对齐对应物的能垒的估计。当使用非碳导电添加剂时,可以直接合成氮化硼。涡轮层性质有利于机械剥离和更稳定的分散体。因此,向涂覆铜表面的聚(乙烯醇)纳米复合膜添加闪蒸产品大大提高了铜在 0.5 m硫酸或 3.5 wt% 盐溶液中的耐腐蚀性。FJH 允许使用散装材料作为反应物,并为大量迄今难以获得的涡轮地层材料提供了一种快速方法。
更新日期:2022-06-24
down
wechat
bug