当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Formulating High-Rate and Long-Cycle Heterostructured Layered Oxide Cathodes by Local Chemistry and Orbital Hybridization Modulation for Sodium-Ion Batteries
Advanced Materials ( IF 29.4 ) Pub Date : 2022-06-23 , DOI: 10.1002/adma.202202695
Yao Xiao 1 , Hong-Rui Wang 2 , Hai-Yan Hu 1 , Yan-Fang Zhu 1 , Shi Li 1 , Jia-Yang Li 1 , Xiong-Wei Wu 2 , Shu-Lei Chou 1
Affiliation  

It is still very urgent and challenging to simultaneously develop high-rate and long-cycle oxide cathodes for sodium-ion batteries (SIBs) because of the sluggish kinetics and complex multiphase evolution during cycling. Here, the concept of accurately manipulating structural evolution and formulating high-performance heterostructured biphasic layered oxide cathodes by local chemistry and orbital hybridization modulation is reported. The P2-structure stoichiometric composition of the cathode material shows a layered P2- and O3-type heterostructure that is explicitly evidenced by various macroscale and atomic-scale techniques. Surprisingly, the heterostructured cathode displays excellent rate performance, remarkable cycling stability (capacity retention of 82.16% after 600 cycles at 2 C), and outstanding compatibility with hard carbon anode because of the integrated advantages of intergrowth structure and local environment regulation. Meanwhile, the formation process from precursors during calcination and the highly reversible dynamic structural evolution during the Na+ intercalation/deintercalation process are clearly articulated by a series of in situ characterization techniques. Also, the intrinsic structural properties and corresponding electrochemical behavior are further elucidated by the density of states and electron localization function of density functional theory calculations. Overall, this strategy, which finely tunes the local chemistry and orbitals hybridization for high-performance SIBs, will open up a new field for other materials.

中文翻译:

通过局部化学和轨道杂交调制制备高倍率和长循环异质结构层状氧化物阴极用于钠离子电池

由于循环过程中动力学缓慢和复杂的多相演化,同时开发用于钠离子电池(SIB)的高倍率和长循环氧化物正极仍然非常紧迫和具有挑战性。在这里,报告了通过局部化学和轨道杂化调制精确操纵结构演化和配制高性能异质结构双相层状氧化物阴极的概念。正极材料的 P2 结构化学计量组成显示出分层的 P2 和 O3 型异质结构,各种宏观尺度和原子尺度技术都明确证明了这一点。令人惊讶的是,异质结构正极表现出优异的倍率性能、显着的循环稳定性(在 2 C 下循环 600 次后容量保持率为 82.16%),由于共生结构和局部环境调节的综合优势,与硬碳阳极具有出色的相容性。同时,煅烧过程中前体的形成过程和Na过程中高度可逆的动态结构演变+嵌入/脱嵌过程通过一系列原位表征技术清晰地表达出来。此外,通过密度泛函理论计算的态密度和电子定位函数进一步阐明了固有的结构性质和相应的电化学行为。总体而言,这种微调高性能 SIB 的局部化学和轨道杂化的策略将为其他材料开辟一个新领域。
更新日期:2022-06-23
down
wechat
bug