当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large-eddy simulation of the influence of hairpin vortex on pressure coefficient of an operating horizontal axis wind turbine
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2022-06-23 , DOI: 10.1016/j.enconman.2022.115864
Rina Su , Zhiying Gao , Yongyan Chen , Cuiqing Zhang , Jianwen Wang

The formation, evolution, and shedding of vortices around the blade of a rotating wind turbine affect the aerodynamic pressure distribution on the blade surface and consequently, the wind turbine output power. The mechanism of blade surface vortex flow affecting aerodynamic pressure is the basis of analyzing aerodynamic characteristics of wind turbines, which is of great significance to evaluate and guide the improvement of the aerodynamic performance of wind turbines. Combined with the large-eddy simulation (LES) and dynamic Smagorinsky model, the local mesh refinement in the rotating domain is used to analyze the evolution details of a streamwise vortex into a hairpin vortex. It is found that the streamwise vortex with a certain angle to the chord appears near 0.5C when the air passes through the blade’s leading edge; the closer it is to the blade tip, the greater the inclination. In the radial region of 0.7–0.8R, the coupled effect of Coriolis and centrifugal forces enhanced by rotation increase the spanwise velocity and evolution of some streamwise vortices into hairpin vortices, so that the streamwise vortices and hairpin vortices play a dominant role in trailing edge vortices. This dramatically increases the trailing edge adverse pressure gradient, thus contributing to the improve the turbine aerodynamic performance. The results indicate that the coupled variation of Coriolis force, centrifugal force, and angle of attack affects the generation and evolution of the hairpin vortex, which in turn affects the aerodynamic performance of the wind turbine, providing new perspectives for the improvement of aerodynamic performance.



中文翻译:

发夹涡对运行水平轴风力机压力系数影响的大涡模拟

旋转风力涡轮机叶片周围涡流的形成、演变和脱落会影响叶片表面的空气动力压力分布,从而影响风力涡轮机的输出功率。叶面涡流对气动压力的影响机理是分析风力机气动特性的基础,对评估和指导风力机气动性能的提高具有重要意义。结合大涡模拟(LES)和动态Smagorinsky模型,利用旋转域局部网格细化分析了流向涡向发夹涡的演化细节。发现空气通过叶片前缘时,在0.5℃附近出现与弦有一定角度的流向涡流;越靠近刀尖,倾斜度就越大。在0.7~0.8R的径向区域,科里奥利耦合作用和旋转增强的离心力增加了翼展方向的速度,部分流向涡流演变为发夹涡,使得流向涡和发夹涡在后缘起主导作用漩涡。这显着增加了后缘逆压梯度,从而有助于提高涡轮气动性能。结果表明,科里奥利力、离心力和攻角的耦合变化影响发夹涡的产生和演化,进而影响风力机的气动性能,为提高气动性能提供了新的视角。在0.7~0.8R的径向区域,科里奥利耦合作用和旋转增强的离心力增加了翼展方向的速度,部分流向涡流演变为发夹涡,使得流向涡和发夹涡在后缘起主导作用漩涡。这显着增加了后缘逆压梯度,从而有助于提高涡轮气动性能。结果表明,科里奥利力、离心力和攻角的耦合变化影响发夹涡的产生和演化,进而影响风力机的气动性能,为提高气动性能提供了新的视角。在0.7~0.8R的径向区域,科里奥利耦合作用和旋转增强的离心力增加了翼展方向的速度,部分流向涡流演变为发夹涡,使得流向涡和发夹涡在后缘起主导作用漩涡。这显着增加了后缘逆压梯度,从而有助于提高涡轮气动性能。结果表明,科里奥利力、离心力和攻角的耦合变化影响发夹涡的产生和演化,进而影响风力机的气动性能,为提高气动性能提供了新的视角。科里奥利力和旋转增强的离心力的耦合作用增加了翼展方向的速度,部分流向涡流演化为发夹涡,使得流向涡和发夹涡在后缘涡中起主导作用。这显着增加了后缘逆压梯度,从而有助于提高涡轮气动性能。结果表明,科里奥利力、离心力和攻角的耦合变化影响发夹涡的产生和演化,进而影响风力机的气动性能,为提高气动性能提供了新的视角。科里奥利力和旋转增强的离心力的耦合作用增加了翼展方向的速度,部分流向涡流演化为发夹涡,使得流向涡和发夹涡在后缘涡中起主导作用。这显着增加了后缘逆压梯度,从而有助于提高涡轮气动性能。结果表明,科里奥利力、离心力和攻角的耦合变化影响发夹涡的产生和演化,进而影响风力机的气动性能,为提高气动性能提供了新的视角。使得流向涡和发夹涡在后缘涡中起主导作用。这显着增加了后缘逆压梯度,从而有助于提高涡轮气动性能。结果表明,科里奥利力、离心力和攻角的耦合变化影响发夹涡的产生和演化,进而影响风力机的气动性能,为提高气动性能提供了新的视角。使得流向涡和发夹涡在后缘涡中起主导作用。这显着增加了后缘逆压梯度,从而有助于提高涡轮气动性能。结果表明,科里奥利力、离心力和攻角的耦合变化影响发夹涡的产生和演化,进而影响风力机的气动性能,为提高气动性能提供了新的视角。

更新日期:2022-06-24
down
wechat
bug