当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sb-etching-doping engineering TiSe2@C core–shell with low polarization effect enabling enhanced lithium storage performance
Applied Surface Science ( IF 6.7 ) Pub Date : 2022-06-23 , DOI: 10.1016/j.apsusc.2022.153994
Shihua Dong , Caixia Li , Danyang Zhao , Peng Wang , Zhaoqiang Li , Chenyong Li , Haoran Xu

The critical challenge of TiSe2 anode for lithium-ion battery (LIB) lies in the severe polarization due to the accumulation of excessive lithium ions and Li3TiSe2 phase during charge/discharge process, resulting in reduced active sites and sluggish interfacial transport kinetics. To solve the issues, Sb doped TiSe2@C core–shell is synthesized via a combined ion etching-doping route. During the process, the introduced Sb element in MIL-125 triggers a synergistic etching-ion exchanging reaction, leading to a structure change of TiSe2 from bulk to core–shell as well as homogeneous Sb-doping in TiSe2. The unique structure demonstrates nano-crystallization of bulk TiSe2 and the formation of local built-in electric field, providing enough achievable active sites and enhancing interfacial charge/ion transfer kinetics. Benefitting from the synergistic effect of structural engineering and electronic structural engineering, polarization effect is weakened and pseudocapacitance storage ability is improved, leading to the high specific capacity and cycle stability of 502 mAh g−1 after 100 cycles at 0.1 A g−1. Therefore, the synthetic route of Sb doped TiSe2@C core–shell anode can be extended to related nanostructured systems for high performance energy storage device application.



中文翻译:

Sb 蚀刻掺杂工程 TiSe2@C 核壳具有低极化效应,可增强锂存储性能

锂离子电池(LIB)TiSe 2负极的关键挑战在于充放电过程中过量锂离子和Li 3 TiSe 2相的积累导致严重的极化,导致活性位点减少和界面传输动力学缓慢. 为了解决这些问题,Sb 掺杂的 TiSe 2 @C 核壳通过组合的离子蚀刻-掺杂路线合成。在此过程中,MIL-125 中引入的 Sb 元素触发了协同蚀刻-离子交换反应,导致 TiSe 2的结构从块体转变为核壳结构,并在 TiSe 2中均匀掺杂 Sb 。独特的结构展示了块状 TiSe 2的纳米结晶以及局部内建电场的形成,提供足够的可实现的活性位点并增强界面电荷/离子转移动力学。受益于结构工程和电子结构工程的协同效应,极化效应减弱,赝电容存储能力提高,从而在0.1 A g -1下循环100次后具有502 mAh g -1的高比容量和循环稳定性。因此,Sb 掺杂的 TiSe 2 @C 核壳阳极的合成路线可以扩展到相关的纳米结构系统,用于高性能储能器件应用。

更新日期:2022-06-23
down
wechat
bug