当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetics or Transport: Whither Goes the Solid-State Battery Cathode?
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2022-06-22 , DOI: 10.1021/acsami.2c04962
Kaustubh G Naik 1 , Bairav S Vishnugopi 1 , Partha P Mukherjee 1
Affiliation  

Solid-state batteries (SSBs) hold the potential to enhance the energy density, power density, and safety of conventional lithium-ion batteries. The theoretical promise of SSBs is predicated on the mechanistic design and comprehensive analysis of various solid–solid interfaces and microstructural features within the system. The spatial arrangement and composition of constituent phases (e.g., active material, solid electrolyte, binder) in the solid-state cathode dictate critical characteristics such as solid–solid point contacts or singularities within the microstructure and percolation pathways for ionic/electronic transport. In this work, we present a comprehensive mesoscale discourse to interrogate the underlying microstructure-coupled kinetic-transport interplay and concomitant modes of resistances that evolve during electrochemical operation of SSBs. Based on a hierarchical physics-based analysis, the mechanistic implications of solid–solid point contact distribution and intrinsic transport pathways on the kinetic heterogeneity is established. Toward designing high-energy-density SSB systems, the fundamental correlation between active material loading, electrode thickness and electrochemical response has been delineated. We examine the paradigm of carbon-binder free cathodes and identify design criteria that can facilitate enhanced performance with such electrode configurations. A mechanistic design map highlighting the dichotomy in kinetic and ionic/electronic transport limitations that manifest at various SSB cathode microstructural regimes is established.

中文翻译:

动力学或运输:固态电池阴极何去何从?

固态电池 (SSB) 具有提高传统锂离子电池的能量密度、功率密度和安全性的潜力。SSB 的理论前景基于对系统内各种固-固界面和微观结构特征的机械设计和综合分析。固态阴极中组成相(例如,活性材料、固体电解质、粘合剂)的空间排列和组成决定了关键特性,例如微观结构内的固-固点接触或奇异性以及离子/电子传输的渗透路径。在这项工作中,我们提出了一个全面的中尺度论述,以探讨在 SSB 电化学运行过程中潜在的微观结构耦合的动力学传输相互作用和伴随的电阻模式。基于基于分层物理的分析,建立了固-固点接触分布和内在传输路径对动力学异质性的机械影响。为了设计高能量密度的 SSB 系统,已经描述了活性材料负载、电极厚度和电化学响应之间的基本相关性。我们研究了无碳粘合剂阴极的范例,并确定了可以促进使用这种电极配置提高性能的设计标准。
更新日期:2022-06-22
down
wechat
bug