当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of turbulent contact absorber hydrodynamics with application in carbon capture
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2022-06-20 , DOI: 10.1016/j.cej.2022.137674
Flavia-Maria Ilea , Ana-Maria Cormos , Simion Dragan , Calin-Cristian Cormos

Chemical gas–liquid absorption systems are one of the most employed technologies for CO2 removal from post-combustion processes, due to the high capture efficiency. This work presents a complex hydrodynamics model used to describe a novel CO2 capture technique that relies on the use of a three phase, gas–solid-liquid absorption column, in which the gas phase acts as the continuous phase, the liquid as the dispersed phase and the low-density solid particles are inert.

To determine and analyze the hydrodynamic parameters of the process: minimum fluidization velocity, fluidized bed height, pressure drop, fluid retention, an air–water system was used. The developed hydrodynamics model was validated against experimental data from a pilot column (correlation coefficients above 0.97).

For the study of the chemisorption process, the liquid phase consists of NaOH solution and the gas phase is a mixture of CO2 and air. The implementation of the hydrodynamic model along with the mass transfer model contributes to increasing the correlation coefficient for the outlet CO2 concentration to a value above 0.99. In this case, the increased value of the mass transfer area leads to a value up to 10 times higher of the transferred flow of carbon dioxide between the two phases, compared to regular packed bed columns.

The model proves useful in the analysis of the influence of liquid phase and solid phase characteristics on the system’s performance. The results show that the capture rate is highly dependent on the fluidized bed height. Increasing the size or density of solid particles leads to a decrease in the height of the fluidized bed resulting in a 20 – 40% decrease in the carbon capture rate.



中文翻译:

湍流接触吸收器流体动力学在碳捕获中的应用评估

由于捕获效率高,化学气液吸收系统是从燃烧后过程中去除 CO 2最常用的技术之一。这项工作提出了一个复杂的流体动力学模型,用于描述一种新型 CO 2捕集技术,该技术依赖于使用三相气-固-液吸收塔,其中气相作为连续相,液体作为分散相相和低密度固体颗粒是惰性的。

为了确定和分析该过程的流体动力学参数:最小流化速度、流化床高度、压降、流体保留,使用了空气-水系统。所开发的流体动力学模型已针对来自中试柱的实验数据进行了验证(相关系数高于 0.97)。

对于化学吸附过程的研究,液相由 NaOH 溶液组成,气相是 CO 2和空气的混合物。流体动力学模型连同传质模型的实施有助于将出口CO 2浓度的相关系数增加到0.99以上的值。在这种情况下,与常规填充床柱相比,传质面积的增加值导致两相之间的二氧化碳传输流量值高达 10 倍。

该模型在分析液相和固相特性对系统性能的影响方面证明是有用的。结果表明,捕获率高度依赖于流化床高度。增加固体颗粒的尺寸或密度会导致流化床高度降低,从而导致碳捕获率降低 20-40%。

更新日期:2022-06-20
down
wechat
bug