当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Programmable Electrochemical Y-Shaped DNA Scaffold Sensor for the Single-Step Detection of Antibodies and Proteins in Untreated Biological Fluids
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2022-06-22 , DOI: 10.1002/adfm.202201881
Andrea Idili 1 , Andrea Bonini 1, 2 , Claudio Parolo 1, 3 , Ruslán Alvarez‐Diduk 1 , Fabio Di Francesco 2 , Arben Merkoçi 1, 4, 5
Affiliation  

Proteins and antibodies are key biomarkers for diagnosing and monitoring specific medical conditions. Currently, gold standard techniques used for their quantification require laborious multi-step procedures, involving high costs and slow response times. It is possible to overcome these limitations by exploiting the chemistry and programmability of DNA to design a reagentless electrochemical sensing platform. Specifically, three DNA single strands are engineered that can self-assemble into a Y-shaped DNA nanostructure that resembles one of the IgGs. In order to convert this DNA nanostructure into a responsive DNA-scaffold bioreceptor, it is modified including two recognition elements, two redox tag molecules, and a thiol group. In the absence of the target, the scaffold receptor can efficiently collide with the electrode surface and generate a strong electrochemical signal. The presence of the target induces its bivalent binding, which produces steric hindrance interactions that limit the receptor's collisional activity. In its bound state, the redox tags can therefore approach the surface at a slower rate, leading to a signal decrease that is quantitatively related to the target concentration. The Y-shape DNA scaffold sensor can detect nanomolar concentrations of antibodies and proteins in <15 min with a single-step procedure directly in untreated biological fluids.

中文翻译:

用于单步检测未经处理的生物体液中的抗体和蛋白质的可编程电化学 Y 形 DNA 支架传感器

蛋白质和抗体是诊断和监测特定医疗状况的关键生物标志物。目前,用于量化的黄金标准技术需要费力的多步骤程序,涉及高成本和缓慢的响应时间。通过利用 DNA 的化学和可编程性来设计无试剂电化学传感平台,可以克服这些限制。具体来说,三条 DNA 单链经过工程改造,可以自组装成类似于其中一种 IgG 的 Y 形 DNA 纳米结构。为了将这种 DNA 纳米结构转化为响应性 DNA 支架生物受体,对其进行了修饰,包括两个识别元件、两个氧化还原标签分子和一个硫醇基团。在没有目标的情况下,支架受体可以有效地与电极表面碰撞并产生强烈的电化学信号。靶标的存在诱导其二价结合,从而产生限制受体碰撞活性的空间位阻相互作用。因此,在其结合状态下,氧化还原标签可以以较慢的速度接近表面,导致与目标浓度定量相关的信号降低。Y 形 DNA 支架传感器可以在 15 分钟内直接在未经处理的生物流体中检测纳摩尔浓度的抗体和蛋白质。因此,氧化还原标签可以以较慢的速度接近表面,导致与目标浓度定量相关的信号下降。Y 形 DNA 支架传感器可以在 15 分钟内直接在未经处理的生物流体中检测纳摩尔浓度的抗体和蛋白质。因此,氧化还原标签可以以较慢的速度接近表面,导致与目标浓度定量相关的信号下降。Y 形 DNA 支架传感器可以在 15 分钟内直接在未经处理的生物流体中检测纳摩尔浓度的抗体和蛋白质。
更新日期:2022-06-22
down
wechat
bug