当前位置: X-MOL 学术Cold Reg. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regional-scale investigation of pile bearing capacity for Canadian permafrost regions in a warmer climate
Cold Regions Science and Technology ( IF 4.1 ) Pub Date : 2022-06-21 , DOI: 10.1016/j.coldregions.2022.103624
Amro Faki , Laxmi Sushama , Guy Doré

Climate change is being experienced particularly intensely in the Arctic and therefore adaptation of engineering systems for this region cannot be further delayed. However, one of the major barriers to studies focused on adapting northern engineering systems is the lack of information at the spatial and temporal scales required for engineering applications. This study investigates pile bearing capacity for selected pile configurations for the Canadian permafrost regions (Nunavut and Northwest Territories), for current and future climates, using the very first ultra-high resolution (4 km) climate change simulation developed for the region using the Global Environmental Multiscale (GEM) model, for a high emission scenario.

Comparison of the ultra-high-resolution GEM simulation, driven by reanalysis, with available observations confirms the model's ability in representing near-surface permafrost and related climate variables. The estimated adfreeze contribution to the total bearing capacity, for current climate, informed by the reanalysis-driven GEM simulation, for a 5-m cement pile, is found to be of the order of 15% for regions with shallow bedrock and 80% for regions with deeper bedrock. Application of the GEM climate change simulation outputs, for RCP8.5 scenario, suggest decreases to adfreeze contribution in the 5–30% range by 2040, with the largest differences noted for regions with deeper bedrock. For steel piles of same configuration, although the adfreeze contributions are only about 70% of that for cement piles, the projected relative changes are of similar magnitude.

Further downscaling to 250 m resolution using the land model of GEM for the Slave Geological-Grays Bay corridor, where future developments are planned, including an all-season road, enables better estimation of bearing capacity for realistic pile scenarios such as those for bridges (in thick layer of sediments) used for river crossings. Due to the wide variation of pile materials, lengths and installation methods, site specific information can be developed from the framework developed in this study. The results of this study, including the ultra-high resolution climate change information, will thus form the basis for additional detailed investigations on climate-infrastructure interactions and climate resiliency studies.



中文翻译:

温暖气候下加拿大多年冻土区桩承载力的区域尺度调查

北极地区正在经历特别强烈的气候变化,因此该地区工程系统的适应不能进一步推迟。然而,以适应北方工程系统为重点的研究的主要障碍之一是缺乏工程应用所需的空间和时间尺度上的信息。本研究使用针对当前和未来气候的加拿大永久冻土区(努纳武特和西北地区)选定桩配置的桩承载能力,使用使用全球环境多尺度 (GEM) 模型,用于高排放情景。

由再分析驱动的超高分辨率 GEM 模拟与现有观测结果的比较证实了该模型在表示近地表永久冻土和相关气候变量方面的能力。对于当前气候,根据再分析驱动的 GEM 模拟,对于 5 米水泥桩,估计的冻干对总承载力的贡献在浅基岩地区约为 15%,在浅基岩地区约为 80%。基岩较深的地区。对于 RCP8.5 情景,GEM 气候变化模拟输出的应用表明,到 2040 年,adfreeze 的贡献将降低 5-30%,其中基岩较深的地区差异最大。对于相同配置的钢桩,虽然adfreeze的贡献只有水泥桩的70%左右,

使用 Slave Geological-Grays Bay 走廊的 GEM 土地模型将分辨率进一步缩小到 250 m,该走廊计划未来发展,包括全季节道路,可以更好地估计现实桩场景(如桥梁)的承载能力(在厚厚的沉积层中)用于河流过境。由于桩材料、长度和安装方法的广泛变化,可以从本研究中开发的框架中获得特定地点的信息。因此,这项研究的结果,包括超高分辨率气候变化信息,将成为进一步详细调查气候-基础设施相互作用和气候弹性研究的基础。

更新日期:2022-06-25
down
wechat
bug