当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microsupercapacitive Stone Module for Natural Energy Storage
ACS Nano ( IF 17.1 ) Pub Date : 2022-06-21 , DOI: 10.1021/acsnano.2c01753
Seunghyun Back 1 , Jung Hwan Park 2 , Bongchul Kang 1
Affiliation  

Increasing accessibility of energy storage platforms through user interface is significant in realizing autonomous power supply systems because they can be expanded in multidimensional directions to enable pervasive and customized energy storage systems (ESSs) for portable and miniaturized electronics. Herein, we implemented a high-performance asymmetric microsupercapacitor (MSC) on a natural stone surface, which represents a class of omnipresent, low-cost, ecofriendly, and recyclable energy storage interface for sustainable and conveniently accessible ESSs. Highly conductive and porous Cu electrodes were robustly fabricated on a rough marble substrate via explosive reduction-sintering of cost-effective CuO nanoparticles by using instantaneous, inexpensive, and simple laser–material interaction (LMI) technology. Faradaic Fe3O4 and capacitive Mn3O4 were sequentially electroplated on the surface of the porous Cu interdigitated electrodes to demonstrate hybrid MSC with a high-potential window and specific area. Despite the irregular geometry of the stone interface, the laser-induced MSC module produced high areal energy density and power density (6.55 μWh cm–2 and 1.2 mW cm–2, respectively) without the use of complex integrated circuit fabrication methods, such as photolithography, vacuum deposition, or chemical etching. The fabricated MSC stone cells were successfully scaled up via serial or parallel connections to achieve the concept of a scalable energy storage wall applicable as a three-dimensional energy station inside or outside a whole-building interface. The excellent durability of the MSC wall was confirmed by harsh-impact tests, and it was attributed to the robustness of the LMI-derived Cu current collectors and electroplated MSC metal oxides. Furthermore, a natural stone substrate with high mechanical toughness could be recycled by grinding the MSC conductors and active layers, thus considerably reducing the environmental pollutants and helping to realize green electronics.

中文翻译:

用于自然储能的微超电容石材模块

通过用户界面增加储能平台的可访问性对于实现自主电源系统具有重要意义,因为它们可以在多维方向上扩展,从而为便携式和小型电子产品提供普遍和定制的储能系统 (ESS)。在此,我们在天然石材表面上实现了一种高性能非对称微型超级电容器 (MSC),它代表了一类无所不在、低成本、生态友好且可回收的储能接口,用于可持续且方便获取的 ESS。通过使用瞬时、廉价且简单的激光-材料相互作用 (LMI) 技术,通过爆炸还原烧结具有成本效益的 CuO 纳米粒子,在粗糙的大理石基板上稳固地制造了高导电和多孔的 Cu 电极。法拉第铁将3 O 4和电容性 Mn 3 O 4依次电镀在多孔 Cu 叉指电极的表面上,以展示具有高电势窗口和特定区域的混合 MSC。尽管石头界面的几何形状不规则,但激光诱导的 MSC 模块产生了高面能量密度和功率密度(6.55 μWh cm –2和 1.2 mW cm –2,分别)而不使用复杂的集成电路制造方法,例如光刻、真空沉积或化学蚀刻。制造的 MSC 石电池通过串行或并行连接成功放大,以实现可伸缩储能墙的概念,适用于整个建筑界面内外的三维能量站。MSC 壁的出色耐久性通过严酷的冲击试验得到证实,这归因于 LMI 衍生的 Cu 集电器和电镀 MSC 金属氧化物的坚固性。此外,通过研磨MSC导体和有源层,可以回收具有高机械韧性的天然石材基板,从而大大减少环境污染物,有助于实现绿色电子产品。
更新日期:2022-06-21
down
wechat
bug