当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing the Energy-Storage Density and Breakdown Strength in PbZrO3/Pb0.9La0.1Zr0.52Ti0.48O3-Derived Antiferroelectric/Relaxor-Ferroelectric Multilayers
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2022-06-19 , DOI: 10.1002/aenm.202200517
Minh D. Nguyen 1 , Yorick A. Birkhölzer 1 , Evert P. Houwman 1 , Gertjan Koster 1 , Guus Rijnders 1
Affiliation  

Multilayer thin-film dielectric capacitors with high energy-storage performance and fast charge/discharge speed have significantly affected the development of miniaturized pulsed-power devices. Here, the interfacial strain in epitaxial multilayers of antiferroelectric PbZrO3 and relaxor-ferroelectric Pb0.9La0.1Zr0.52Ti0.48O3 is shown to significantly enhance the maximum polarization of the multilayer thin-film capacitors, beyond that of the composing individual layers. Insights obtained from atomically resolved energy-dispersive X-ray spectroscopy and high-resolution X-ray diffraction analysis of the interface and domain structure are used to develop phenomenological models that explain the observed trends in breakdown strength and energy-storage density as a function of multilayer period number. The underlying mechanism is the mechanical coupling between the layers that depends on the individual layer thicknesses. These factors result in a strongly enhanced recoverable energy-storage density (increased by a factor of 4 to ≈128.4 J cm−3) with high efficiency (≈81.2%). Moreover, the multilayer films show almost fatigue-free energy-storage performance after 1010 switching cycles, even at elevated temperatures up to 220 °C, demonstrating their robustness. The outstanding properties show the great potential of epitaxial multilayers for energy-storage applications, due to the well-defined separate layers and coupling of properties across the interfaces, not present in ceramic composites.

中文翻译:

提高 PbZrO3/Pb0.9La0.1Zr0.52Ti0.48O3 衍生反铁电/弛豫-铁电多层膜的储能密度和击穿强度

具有高储能性能和快速充放电速度的多层薄膜介质电容器极大地影响了小型化脉冲功率器件的发展。这里,反铁电 PbZrO 3和弛豫铁电 Pb 0.9 La 0.1 Zr 0.52 Ti 0.48 O 3的外延多层中的界面应变显示显着增强多层薄膜电容器的最大极化,超过组成单个层的极化。从原子分辨能量色散 X 射线光谱和界面和域结构的高分辨率 X 射线衍射分析中获得的见解用于开发现象学模型,解释观察到的击穿强度和储能密度趋势作为函数多层周期数。底层机制是取决于各个层厚度的层之间的机械耦合。这些因素导致可回收能量存储密度大大提高(增加了 4 倍至 ≈128.4 J cm -3) 具有高效率 (≈81.2%)。此外,即使在高达 220 °C 的高温下,多层薄膜在 10 10次开关循环后也显示出几乎无疲劳的储能性能,证明了它们的稳健性。出色的性能显示了外延多层膜在储能应用中的巨大潜力,这是由于定义明确的分离层和跨界面的性能耦合,而陶瓷复合材料中不存在。
更新日期:2022-06-19
down
wechat
bug