当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-throughput identification of highly active and selective single-atom catalysts for electrochemical ammonia synthesis through nitrate reduction
Nano Energy ( IF 17.6 ) Pub Date : 2022-06-18 , DOI: 10.1016/j.nanoen.2022.107517
Shuo Wang , Haixing Gao , Lei Li , Kwan San Hui , Duc Anh Dinh , Shuxing Wu , Sachin Kumar , Fuming Chen , Zongping Shao , Kwun Nam Hui

The highly selective and active nitrate-to-ammonia electrochemical conversion (NO3 reduction reaction [NO3RR]) can be an appealing and supplementary alternative to the Haber-Bosch process. It also opens up a new idea for addressing nitrate pollution. Previous study demonstrated that FeN4 single-atom catalyst (SAC) indicates excellent NO3RR performance. Nonetheless, the mechanism that triggers the electrocatalytic NO3RR remains unclear. The feasibility of NO3RR over various SACs is verified in this study via high-throughput density functional theory calculations with the single transition metal (TM) atom coordinated with four nitrogen atoms supported on graphene as the example. We conducted a comprehensive screening of TM SAC candidates for stability, NO3 adsorption strength, catalytic activity, and selectivity. Results reveal that the most promising candidate among the 23 TM SACs is Os SAC with a low limiting potential of − 0.42 V. Os SAC is better than Fe SAC with a limiting potential of −0.53 V because of the strong interaction between the oxygen of NO3 species and Os atom. The origin of high NO3RR activity of Os SAC is explained by its inner electronic structure of the strong hybridization of the Os atom and NO3 caused by the increasing charge transfer from TM atom to NO3, leading to the suitable NO3 adsorption. This research provides a fundamental insight of discovering novel NO3RR catalysts and may provide a motivating drive for the creation of effective ammonia electrocatalysts for further experimental investigation.



中文翻译:

硝酸盐还原电化学氨合成高活性和选择性单原子催化剂的高通量鉴定

高选择性和活性的硝酸盐到氨的电化学转化(NO 3还原反应 [NO 3 RR])可以成为 Haber-Bosch 工艺的有吸引力的补充替代方案。它还为解决硝酸盐污染开辟了新思路。先前的研究表明,FeN 4单原子催化剂 (SAC) 显示出优异的 NO 3 RR 性能。尽管如此,触发电催化 NO 3 RR 的机制仍不清楚。NO 3的可行性本研究通过高通量密度泛函理论计算验证了各种 SAC 上的 RR,其中单个过渡金属 (TM) 原子与石墨烯上负载的四个氮原子配位作为示例。我们对 TM SAC 候选物的稳定性、NO 3 -吸附强度、催化活性和选择性进行了全面筛选。结果表明,在 23 种 TM SAC 中,最有希望的候选者是 Os SAC,其低限电位为 - 0.42 V。由于 NO 的氧之间的强相互作用,Os SAC 优于限制电位为 -0.53 V 的 Fe SAC 3 -物种和Os原子。高NO 3的由来Os SAC 的 RR 活性可以通过其内部电子结构来解释,这是由于从 TM 原子​​到 NO 3 -的电荷转移增加导致的 Os 原子和 NO 3 -的强杂化,导致合适的 NO 3 -吸附。该研究为发现新型 NO 3 RR 催化剂提供了基本见解,并可能为创建有效的氨电催化剂以进行进一步的实验研究提供动力。

更新日期:2022-06-18
down
wechat
bug