当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the shockley–queisser limit
Nano Energy ( IF 17.6 ) Pub Date : 2022-06-17 , DOI: 10.1016/j.nanoen.2022.107468
Zicheng Li, Can Wang, Ping-Ping Sun, Zhihao Zhang, Qin Zhou, Yitian Du, Jianbin Xu, Yibo Chen, Qiu Xiong, Liming Ding, Mohammad Khaja Nazeeruddin, Peng Gao

SnO2-based electron transport layers (ETLs) offer outstanding band alignment, excellent chemical and UV stability, high transmittance, high conductivity, and processability at low temperatures. However, unfortunately, the state-of-the-art SnO2 colloid precursor suffered from agglomeration over time and structural defects such as dangling hydroxyl groups and oxygen vacancies, which deteriorate both the morphology and electronic quality of the resulting ETL. Especially, these trap states near the valence band can hinder charge extraction and transport of electrons to couple with non-radiative recombination loss. Here, we introduce a novel WO3 @SnO2 nanocomposite ETL, which is synthesized by in situ peptizations of WO3 in commercial alkaline SnO2 colloid nanocrystals. The hydrated (peptized) WO3 forms H2WO4 (WO42-) to effectively stabilize the SnO2 nanocrystals in the dispersion and bind to the defect sites. Intriguingly, the H2WO4 converts back to the WO3 phase to form nano-heterostructured composite with SnO2 particles during the process of film fabrication, further promoting passivation and charge extraction. Through the novel method, we could achieve molecular level passivation of SnO2 layer by WO3, and a power conversion efficiency of 23.6% for a 0.1 cm2 PSC device with ultra-high FF of 85.8% was demonstrated. Furthermore, a modified detailed balance model was used to verify the drastically lessened surface & bulk defect-induced recombination loss in WO3 @SnO2 based devices. Finally, the corresponding unencapsulated cell retained ~91% of its initial efficiency after 2000 h of damp exposure. This work provides a promising method to access the Shockley–Queisser limit of fill factor for single-junction PSC.



中文翻译:

碱性 SnO2 胶体中 WO3 的原位胶溶用于稳定的钙钛矿太阳能电池,其记录填充因子接近休克利-奎瑟极限

基于SnO 2的电子传输层 (ETL) 具有出色的能带排列、出色的化学和紫外线稳定性、高透射率、高导电性以及低温下的可加工性。然而,不幸的是,最先进的 SnO 2胶体前体随着时间的推移会发生团聚和结构缺陷,例如悬空羟基和氧空位,这会降低所得 ETL 的形态和电子质量。特别是,价带附近的这些陷阱态会阻碍电荷提取和电子传输,从而导致非辐射复合损失。在这里,我们介绍了一种新型 WO 3 @SnO 2纳米复合材料 ETL,它是通过 WO 3的原位胶溶合成的。在商业碱性SnO 2胶体纳米晶体中。水合(胶溶)WO 3形成H 2 WO 4 (WO 4 2- ),以有效稳定分散体中的SnO 2纳米晶体并结合到缺陷位点。有趣的是,在薄膜制造过程中,H 2 WO 4转化回 WO 3相,与 SnO 2颗粒形成纳米异质结构复合材料,进一步促进钝化和电荷提取。通过该新方法,我们可以实现WO 3对SnO 2层的分子级钝化。,并且证明了具有 85.8% 的超高 FF 的0.1 cm 2 PSC 器件的功率转换效率为 23.6% 。此外,使用改进的详细平衡模型来验证基于 WO 3 @SnO 2的器件中表面和体积缺陷引起的复合损失显着减少。最后,在潮湿暴露 2000 小时后,相应的未封装电池保持了约 91% 的初始效率。这项工作提供了一种有前途的方法来访问单结 PSC 的填充因子的 Shockley-Queisser 限制。

更新日期:2022-06-21
down
wechat
bug