当前位置: X-MOL 学术J. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Upslope release—Downslope receipt? Multi-year plant uptake of permafrost-released nitrogen along an arctic hillslope
Journal of Ecology ( IF 5.5 ) Pub Date : 2022-05-13 , DOI: 10.1111/1365-2745.13925
Emily Pickering Pedersen 1, 2 , Bo Elberling 2 , Anders Michelsen 1, 2
Affiliation  

1 INTRODUCTION

As arctic permafrost continues to thaw, N availability increases in the deep active layer soil, which may provide an important nutrient input to N-limited arctic plants (Beermann et al., 2017; Keuper et al., 2012; Salmon et al., 2018). This increased N availability is driven by both direct release of N in plant-available chemical forms and organic matter decomposition of newly thawed permafrost soil (Elberling et al., 2010; Keuper et al., 2012). Even though this N-release occurs in the deep soil, at the interface between permafrost and active layer soil, arctic plants have the capacity to take up this newly available N locally at the point-of-release (Blume-Werry et al., 2019; Hewitt et al., 2018; Keuper et al., 2017; Pedersen et al., 2020; Wang et al., 2018; Zhu et al., 2016). However, in an undulating arctic landscape, N may be transported downslope via topographical and hydrological pathways (Harms & Jones Jr, 2012; Harms & Ludwig, 2016; McNamara et al., 1999). The question therefore arises whether upslope-released permafrost-N can benefit downslope plant communities, and specifically where, when and which plant species acquire topographically transported N.

In permafrost ecosystems, plant N acquisition is restricted to the seasonally thawed active layer soil (Blume-Werry et al., 2019; Iversen et al., 2015), beneath which the permafrost table creates an impermeable barrier that results in downslope movement of water and dissolved nutrients (McNamara et al., 1999). The extent to which N is transported downslope depends on slope gradient (Yano et al., 2010), surface and subsurface hydrology (Harms & Ludwig, 2016), microtopography of the permafrost table (Wright et al., 2009), soil characteristics (Yano et al., 2010), timing and extent of snowmelt and summer precipitation events (Harms & Jones Jr, 2012; McNamara et al., 2008; Yano et al., 2010). Therefore, as a consequence of permafrost thaw, the combination of increased N-release and hydrological changes could accelerate deep-soil N transport (Frey et al., 2007; Harms & Jones Jr, 2012; Jones Jr. et al., 2005; Petrone et al., 2006), potentially making these nutrients available to plants located at a distance from the point-of-release.

Transport and plant uptake of N along arctic hillslopes also depend on the form in which N is released. Among other N-forms, thawing permafrost soils release inorganic N in the form of ammonium (NH4+) (Beermann et al., 2017; Elberling et al., 2010; Keuper et al., 2012), which can be converted into nitrate (NO3) via nitrification (Oulehle et al., 2016). While NH4+ has relatively low mobility and is commonly preferred by plants and thus immobilised (Clemmensen et al., 2008; Sorensen, Clemmensen, et al., 2008), NO3 is more soluble and has a high potential for export (Harms & Jones Jr, 2012; McClelland et al., 2007; Petrone et al., 2006). Hence, the N-form upon release may contribute to determining both the transport potential of, but also plant access to N along arctic hillslopes.

The ecosystem implications of downslope N movement are intricately linked to plant access and uptake. Strong N-limitation renders arctic plants efficient at capturing and retaining available N (Andresen et al., 2008; Clemmensen et al., 2008; Pedersen et al., 2020; Yano et al., 2010). However, since permafrost-N is released at a depth where biological retention is reduced due to low root biomass, downslope-moving deep-soil N may bypass shallow-rooted plants (Blume-Werry et al., 2019; Harms & Jones Jr, 2012). Consequently, N may be lost from the ecosystem, unless plants gain access to this N via processes of vertical redistribution through palsa formation (Seppälä, 2011), mycelial networks (Hewitt et al., 2020), or vertical recycling via root and leaf litter inputs (Blume-Werry et al., 2019; DeMarco et al., 2014; Hobbie & Horton, 2007; Marsh et al., 2000; Pedersen et al., 2020). Furthermore, plant N uptake may be dictated by species-specific characteristics, including rooting depth (Blume-Werry et al., 2019; Hewitt et al., 2018; Iversen et al., 2015; Keuper et al., 2017), mycorrhizal associations (Andresen et al., 2008; Hewitt et al., 2018, 2020; Michelsen et al., 1998), N-form preference (Clemmensen et al., 2008; Liu et al., 2018; McKane et al., 2002; Sorensen, Clemmensen, et al., 2008) or growth form (Andersen et al., 2020; McKane et al., 2002; Oulehle et al., 2016; Sloan et al., 2016; Sorensen, Clemmensen, et al., 2008). Thus, the extent to which permafrost-released N may benefit arctic plant communities locally and downslope from the point-of-release depends on which plant species can capture and make use of the available N before potential export.

Hitherto, studies investigating plant uptake of permafrost-released N have focused on local N uptake in non-sloping terrain (Blume-Werry et al., 2019; Hewitt et al., 2018; Keuper et al., 2017; Pedersen et al., 2020; Wang et al., 2018; Zhu et al., 2016). Studies of N transport along arctic hillslopes have mostly been directed towards the physical mechanisms of export and delivery to downslope aquatic ecosystems (Frey et al., 2007; Harms & Jones Jr, 2012; Harms & Ludwig, 2016; Jones Jr. et al., 2005; Lynch et al., 2019; Petrone et al., 2006). So far, the connection between hillslope hydrology and shrub distribution has been modelled (Mekonnen et al., 2021), but the potential plant uptake of topographically transported N has only been examined in the context of surface-released N (Yano et al., 2010) and climate-scenario modelling (Rastetter et al., 2004). Yet, the long-term prospect of continued permafrost thaw in the Arctic renders it critical to investigate landscape-scale plant responses, because enhanced transport and availability of permafrost-N could lead to important changes in species composition, plant productivity and ultimately carbon balance.

To examine the in situ coupling between topographical N transport and corresponding plant uptake, we used stable isotope labelling (15N) to simulate pulse-release of NH4+ and NO3 in the deep active layer near the permafrost thaw front at the top of an arctic hillslope. Plant species-specific N uptake was followed from the upslope point-of-release to the bottom of the slope through 4 years. We address the complex interactions between space, time and plant species-specific responses through four research questions:
  1. Can plants along an arctic hillslope acquire topographically transported permafrost-N at the point-of-release and further downslope?
  2. How do the patterns of N transport, redistribution and plant uptake change over multiple years after pulse release?
  3. Does plant N uptake along the slope depend on the initial N-form of release (ammonium or nitrate)?
  4. What are the plant species-specific N uptake patterns along the slope?
Understanding the dynamics of plant uptake of permafrost-released N along arctic hillslopes will improve our ability to predict long-term and landscape-scale vegetation responses to climate change in the Arctic.


中文翻译:

上坡放行——下坡收据?北极山坡上多年植物对多年冻土释放的氮的吸收

1 简介

随着北极多年冻土继续解冻,深层活动层土壤中氮的有效性增加,这可能为氮限制的北极植物提供重要的养分输入(Beermann et al.,  2017 ; Keuper et al.,  2012 ; Salmon et al.,  2018 年)。这种增加的 N 可用性是由植物可利用的化学形式直接释放 N 和新解冻的永久冻土土壤的有机物质分解推动的(Elberling 等人,  2010 年;Keuper 等人,  2012 年)。即使这种 N 释放发生在深层土壤中,在永久冻土层和活动层土壤之间的界面,北极植物也有能力在释放点局部吸收这种新可用的 N(Blume-Werry 等人,  2019; 休伊特等人,  2018 年;库珀等人,  2017 年;佩德森等人,  2020;王等人,  2018;朱等人,  2016 年)。然而,在起伏的北极景观中,N 可能通过地形和水文路径向下坡输送(Harms & Jones Jr,  2012 ; Harms & Ludwig,  2016 ; McNamara et al.,  1999)。因此,问题出现了,上坡释放的永久冻土氮是否可以使下坡植物群落受益,特别是在何处、何时以及哪些植物物种获得地形运输的氮。

在多年冻土生态系统中,植物氮的获取仅限于季节性解冻的活动层土壤(Blume-Werry 等人,  2019 年;Iversen 等人,  2015 年),在该土壤下,永久冻土表形成了不透水的屏障,导致水的下坡运动和溶解的营养物质(McNamara 等人,  1999 年)。N 向下坡输送的程度取决于坡度(Yano 等人,  2010 年)、地表和地下水文(Harms & Ludwig,  2016 年)、永久冻土表的微观地形(Wright 等人,  2009 年)、土壤特征( Yano 等人,  2010 年),融雪和夏季降水事件的时间和范围(Harms & Jones Jr, 2012;麦克纳马拉等人,  2008 年;矢野等人,  2010 年)。因此,由于多年冻土融化,氮释放增加和水文变化的结合可能会加速深层土壤氮的迁移(Frey 等,  2007;Harms & Jones Jr,  2012;Jones Jr. 等,  2005; Petrone 等人,  2006 年),可能使这些营养物质可用于远离释放点的植物。

沿北极山坡的 N 运输和植物吸收也取决于 N 的释放形式。在其他 N 形式中,解冻的永久冻土土壤会以铵 (NH 4 + ) 的形式释放无机 N (Beermann et al.,  2017 ; Elberling et al.,  2010 ; Keuper et al.,  2012 ),可以转化为通过硝化作用产生硝酸盐 (NO 3 - ) (Oulehle et al.,  2016 )。虽然 NH 4 +具有相对低的迁移率并且通常是植物所偏好的,因此被固定化(Clemmensen 等人,  2008 年;Sorensen,Clemmensen 等人,  2008 年),NO 3 -更易溶解并且具有很高的出口潜力(Harms & Jones Jr,  2012 ; McClelland et al.,  2007 ; Petrone et al.,  2006)。因此,释放后的 N 型可能有助于确定沿北极山坡的 N 的运输潜力,以及植物对 N 的获取。

下坡氮运动对生态系统的影响与植物的获取和吸收有着错综复杂的联系。强烈的 N 限制使北极植物能够有效地捕获和保留可用 N(Andresen 等人,  2008 年;Clemmensen 等人,  2008 年;Pedersen 等人,  2020 年;Yano 等人,  2010 年)。然而,由于永久冻土氮释放的深度由于根系生物量低而导致生物保留减少,因此下坡移动的深层土壤氮可能会绕过浅根植物(Blume-Werry 等人,  2019 年;Harms & Jones Jr,  2012 年)。因此,N 可能会从生态系统中流失,除非植物通过形成 palsa 的垂直再分配过程获得 N(Seppälä,  2011)、菌丝网络(Hewitt 等人,  2020 年),或通过根和叶凋落物输入进行垂直回收(Blume-Werry 等人,  2019 年;DeMarco 等人,  2014 年;Hobbie & Horton,  2007 年;Marsh 等人,  2000 年;佩德森等人,  2020 年)。此外,植物对氮的吸收可能受物种特异性特征的影响,包括生根深度(Blume-Werry 等人,  2019 年;Hewitt 等人,  2018 年;Iversen 等人,  2015 年;Keuper 等人,  2017 年)、菌根协会(Andresen 等人,  2008 年;Hewitt 等人,  2018 年2020 年;Michelsen 等人, 1998 年)、N 型偏好(Clemmensen 等人,  2008 年;Liu 等人,  2018 年;McKane 等人,  2002 年;Sorensen,Clemmensen 等人,  2008 年)或生长形式(Andersen 等人,  2020 年; McKane 等人,  2002 年;Oulehle 等人,  2016 年;Sloan 等人,  2016 年;Sorensen、Clemmensen 等人,  2008 年)。因此,永久冻土释放的氮对当地和释放点下坡的北极植物群落的益处取决于哪些植物物种可以在潜在出口之前捕获和利用可用的氮。

迄今为止,调查植物吸收永久冻土释放的 N 的研究主要集中在非倾斜地形中的局部 N 吸收(Blume-Werry 等人,  2019 年;Hewitt 等人,  2018 年;Keuper 等人,  2017 年;Pedersen 等人。 ,  2020 ; Wang et al.,  2018 ; Zhu et al.,  2016 )。对沿北极山坡的 N 迁移的研究主要针对向下坡水生生态系统输出和输送的物理机制(Frey 等人,  2007 年;Harms 和 Jones Jr,  2012 年;Harms 和 Ludwig,  2016 年;Jones Jr. 等人。 ,  2005 ; Lynch 等人,  2019 ; Petrone 等人,  2006)。到目前为止,已经对山坡水文和灌木分布之间的联系进行了建模(Mekonnen 等人,  2021 年),但仅在地表释放 N 的背景下检查了植物对地形运输 N 的潜在吸收(Yano 等人,  2010 年)和气候情景建模(Rastetter 等人,  2004 年)。然而,北极永久冻土持续融化的长期前景使得研究景观尺度的植物反应变得至关重要,因为永久冻土-N的运输和可用性的增强可能导致物种组成、植物生产力和最终碳平衡的重要变化。

为了检查地形 N 迁移和相应植物吸收之间的原位耦合,我们使用稳定同位素标记 ( 15 N) 来模拟顶部永久冻土融化前沿附近深层活性层中 NH 4 +和 NO 3 -的脉冲释放北极的山坡。从上坡释放点到坡底,通过 4 年跟踪植物物种特异性 N 吸收。我们通过四个研究问题解决空间、时间和植物物种特异性反应之间的复杂相互作用:
  1. 北极山坡沿线的植物能否在释放点和进一步下坡处获得地形运输的永久冻土-N?
  2. 脉冲释放后多年的 N 运输、再分配和植物吸收模式如何变化?
  3. 植物沿斜坡吸收氮是否取决于最初的氮释放形式(铵或硝酸盐)?
  4. 沿斜坡的植物物种特异性 N 吸收模式是什么?
了解沿北极山坡的永久冻土释放的氮的植物吸收动态将提高我们预测北极气候变化的长期和景观尺度植被响应的能力。
更新日期:2022-05-13
down
wechat
bug