当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Layered Porous Graphitic Carbon Nitride Stabilized Effective Co2SnO4 Inverse Spinel as a Bifunctional Electrocatalyst for Overall Water Splitting
Langmuir ( IF 3.9 ) Pub Date : 2022-06-16 , DOI: 10.1021/acs.langmuir.2c01095
Sathiya Bama Sundararaj 1 , Saravanakumar Tamilarasan 2 , Selvaraju Thangavelu 1
Affiliation  

Developing an efficient, low-cost, and non-noble metal oxide-based nanohybrid material for overall water splitting is a highly desirable approach to promote clean energy harnessing and to minimize environmental issues. Accordingly, we proposed an interfacial engineering approach to construct layered porous graphitic carbon nitride (g-C3N4)-stabilized Co2SnO4 inverse spinel nanohybrid materials as highly active bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. Here, a Co2SnO4/g-C3N4 nanohybrid with a layered porous g-C3N4 stabilized cubelike inverse spinel has been synthesized with an enhanced surface area via a simple one-pot hydrothermal method. Besides, detailed structural and morphological characterizations were carried out using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR), and Brunauer–Emmett–Teller (BET) analysis. Briefly, XPS analysis has revealed the existence of a strong coupling bond at the interface between a definite proportion of g-C3N4 nanosheets and the inverse spinel, which act as an electron transport channel to explore the exceptional performances for HER and OER. Compared to the Co2SnO4 inverse spinel lattice or g-C3N4 nanosheets, the prepared Co2SnO4/g-C3N4 nanohybrid-loaded 316 SSL mesh electrode showed excellent and stable electrocatalytic performances with very low overpotentials of 41 mV for HER and 260 mV for OER to reach the current density of 10 mA cm–2. To understand the electrocatalytic phenomena, the faradic efficiency was calculated for the prepared bifunctional electrocatalyst as 96%, which effectively would favor water electrolysis. Accordingly, the Co2SnO4/g-C3N4 nanohybrid-loaded electrodes were constructed, and the minimum cell voltage was found to be 1.52 V to reach the current density of 10 mA cm–2, which is comparable to the standard RuO2∥Pt/C in two-electrode systems. Thus, the developed nanohybrid-based electrocatalyst could be an alternative to noble metal-centered systems for highly efficient overall water splitting.

中文翻译:

层状多孔石墨氮化碳稳定有效的 Co2SnO4 反尖晶石作为双功能电催化剂用于整体水分解

开发用于整体水分解的高效、低成本和非贵金属氧化物基纳米混合材料是促进清洁能源利用和最大限度减少环境问题的一种非常理想的方法。因此,我们提出了一种界面工程方法来构建层状多孔石墨氮化碳(gC 3 N 4)稳定的Co 2 SnO 4反尖晶石纳米杂化材料,作为析氢反应(HER)和析氧反应(OER)的高活性双功能电催化剂。在碱性介质中。在这里,Co 2 SnO 4 /gC 3 N 4纳米杂化物与层状多孔 gC 3 N通过简单的一锅水热法合成了具有增强表面积的4稳定立方反尖晶石。此外,还使用 ​​X 射线衍射 (XRD)、X 射线光电子能谱 (XPS)、场发射扫描电子显微镜 (FE-SEM)、高分辨率透射电子显微镜 (HR-TEM) 进行了详细的结构和形态表征。 )、傅里叶变换红外 (FT-IR) 和 Brunauer-Emmett-Teller (BET) 分析。简而言之,XPS 分析揭示了在一定比例的 gC 3 N 4纳米片和反尖晶石之间的界面处存在强耦合键,作为电子传输通道来探索 HER 和 OER 的卓越性能。与 Co 2相比SnO 4反尖晶石晶格或gC 3 N 4纳米片,制备的Co 2 SnO 4 /gC 3 N 4纳米杂化负载316 SSL网状电极表现出优异且稳定的电催化性能,HER和OER的过电位分别为41 mV和260 mV。达到 10 mA cm –2的电流密度。为了了解电催化现象,计算出制备的双功能电催化剂的法拉第效率为 96%,这有效地有利于水电解。因此,Co 2 SnO 4 /gC 3 N 4构建了纳米混合负载电极,发现最小电池电压为 1.52 V 以达到 10 mA cm -2的电流密度,这与双电极系统中的标准 RuO 2 ∥Pt/C 相当。因此,开发的基于纳米杂化的电催化剂可以替代以贵金属为中心的系统,以实现高效的整体水分解。
更新日期:2022-06-16
down
wechat
bug