当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thin In-Plane In2O3/ZnIn2S4 Heterostructure Formed by Topological-Atom-Extraction: Optimal Distance and Charge Transfer for Effective CO2 Photoreduction
Small ( IF 13.3 ) Pub Date : 2022-06-15 , DOI: 10.1002/smll.202201668
Lin Zhao 1, 2 , Bixia Yang 1, 2 , Guoxin Zhuang 1, 2 , Yonglin Wen 1, 2 , Tingshi Zhang 1, 2 , Mingxiong Lin 1, 2 , Zanyong Zhuang 1, 2 , Yan Yu 1, 2
Affiliation  

Exploitation of atomic-level principles to optimize the charge transfer on ultrathin 2D heterostructures is an emerging frontier in relieving the energy and environmental crisis. Herein, a facile “topological-atom-extraction” protocol is disclosed, i.e., selective extraction of Zn from ultrathin half-unit-cell ZnIn2S4 (HZIS) can embed thin In2O3 domain into 1.60 nm thick HZIS layer to create an atomically thin in-plane In2O3/HZIS heterostructure. Thanks to the optimal distance and capability of charge separation, the in-plane In2O3/HZIS heterostructure is among the best ZnIn2S4-based CO2 reduction reaction (CRR) photocatalysts, and indeed demonstrates a significant increase (from 6.8- to 128-fold) in CO production rate compared with those of out-plane ZIS@In2O3 and out-plane In2O3-HZIScalcined heterostructures. Density Functional Theory simulation reveals that whereas the out-plane heterostructure has a much smaller ∆q of 0.2–0.25 e, the in-plane heterostructure with “zero distance contact” has an optimal ∆q of 1.05 e between In2O3 and HZIS that induces remarkable charge redistribution on the in-plane heterojunction interface and creates local electric field confined within the ultrathin layer. The charge redistribution efficiently directs the charge-carrier separation in S-scheme photocatalytic system and endows long-lifetime carrier to CRR active HZIS. The findings demonstrate the strong versatility of engineering atomic-level heterojunctions for efficient catalysts design.

中文翻译:

拓扑原子提取形成的薄平面内 In2O3/ZnIn2S4 异质结构:有效 CO2 光还原的最佳距离和电荷转移

利用原子级原理优化超薄二维异质结构上的电荷转移是缓解能源和环境危机的新兴前沿。在此,公开了一种简便的“拓扑原子提取”方案,即从超薄半晶胞 ZnIn 2 S 4 (HZIS) 中选择性提取 Zn 可以将薄 In 2 O 3域嵌入到 1.60 nm 厚的 HZIS 层中,从而创建一个原子级薄的平面内 In 2 O 3 /HZIS 异质结构。由于最佳的电荷分离距离和能力,面内 In 2 O 3 /HZIS 异质结构是最好的 ZnIn 2 S 4之一基 CO 2还原反应 (CRR) 光催化剂,与平面外 ZIS@In 2 O 3和平面外 In 2 O相比,CO 产率确实显着提高(从 6.8 倍到 128 倍) 3 -HZIS煅烧异质结构。密度泛函理论模拟表明,虽然面外异质结构的 Δq 小得多,为 0.2-0.25 e,但具有“零距离接触”的面内异质结构在 In 2 O 3之间的最佳 Δq 为 1.05 e和 HZIS,它在面内异质结界面上引起显着的电荷重新分布,并产生限制在超薄层内的局部电场。电荷再分配有效地指导了 S 型光催化系统中的电荷载流子分离,并赋予 CRR 活性 HZIS 长寿命的载流子。这些发现证明了工程原子级异质结在高效催化剂设计中的强大多功能性。
更新日期:2022-06-15
down
wechat
bug