当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal Intermittent Particle Filter
IEEE Transactions on Signal Processing ( IF 5.4 ) Pub Date : 2022-06-13 , DOI: 10.1109/tsp.2022.3179877
Antoine Aspeel 1 , Amaury Gouverneur 1 , Raphael M. Jungers 1 , Benoit Macq 1
Affiliation  

The problem of the optimal allocation (in the expected mean square error sense) of a measurement budget for particle filtering is addressed. We propose three different optimal intermittent filters, whose optimality criteria depend on the information available at the time of decision making. For the first, the stochastic program filter, the measurement times are given by a policy that determines whether a measurement should be taken based on the measurements already acquired. The second, called the offline filter, determines all measurement times at once by solving a combinatorial optimization program before any measurement acquisition. For the third one, which we call online filter, each time a new measurement is received, the next measurement time is recomputed to take all the information that is then available into account. We prove that in terms of expected mean square error, the stochastic program filter outperforms the online filter, which itself outperforms the offline filter. However, these filters are generally intractable. For this reason, the filter estimate is approximated by a particle filter. Moreover, the mean square error is approximated using a Monte-Carlo approach, and different optimization algorithms are compared to approximately solve the combinatorial programs (a random trial algorithm, greedy forward and backward algorithms, a simulated annealing algorithm, and a genetic algorithm). Finally, the performance of the proposed methods is illustrated on two examples: a tumor motion model and a common benchmark for particle filtering.

中文翻译:

最佳间歇粒子过滤器

解决了粒子滤波测量预算的最优分配(在预期均方误差意义上)的问题。我们提出了三种不同的最佳间歇过滤器,其最佳标准取决于决策时可用的信息。对于第一个随机程序过滤器,测量时间由策略给出,该策略根据已经获得的测量确定是否应该进行测量。第二种称为离线过滤器,通过在任何测量采集之前求解组合优化程序来一次确定所有测量时间。对于第三个,我们称之为在线过滤器,每次接收到新的测量值时,都会重新计算下一次测量时间,以考虑所有可用的信息。我们证明,就预期均方误差而言,随机程序过滤器优于在线过滤器,在线过滤器本身优于离线过滤器。然而,这些过滤器通常是难以处理的。出于这个原因,滤波器估计近似于粒子滤波器。此外,均方误差使用蒙特卡罗方法进行近似,并比较不同的优化算法以近似求解组合程序(随机试验算法、贪婪前向和后向算法、模拟退火算法和遗传算法)。最后,通过两个示例说明了所提出方法的性能:肿瘤运动模型和粒子过滤的通用基准。它本身优于离线过滤器。然而,这些过滤器通常是难以处理的。出于这个原因,滤波器估计近似于粒子滤波器。此外,均方误差使用蒙特卡罗方法进行近似,并比较不同的优化算法以近似求解组合程序(随机试验算法、贪婪前向和后向算法、模拟退火算法和遗传算法)。最后,通过两个示例说明了所提出方法的性能:肿瘤运动模型和粒子过滤的通用基准。它本身优于离线过滤器。然而,这些过滤器通常是难以处理的。出于这个原因,滤波器估计近似于粒子滤波器。此外,均方误差使用蒙特卡罗方法进行近似,并比较不同的优化算法以近似求解组合程序(随机试验算法、贪婪前向和后向算法、模拟退火算法和遗传算法)。最后,通过两个示例说明了所提出方法的性能:肿瘤运动模型和粒子过滤的通用基准。并比较不同的优化算法来近似求解组合程序(随机试验算法、贪心前向和后向算法、模拟退火算法和遗传算法)。最后,通过两个示例说明了所提出方法的性能:肿瘤运动模型和粒子过滤的通用基准。并比较不同的优化算法来近似求解组合程序(随机试验算法、贪心前向和后向算法、模拟退火算法和遗传算法)。最后,通过两个示例说明了所提出方法的性能:肿瘤运动模型和粒子过滤的通用基准。
更新日期:2022-06-14
down
wechat
bug