当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface-Preferred Crystal Plane Growth Enabled by Underpotential Deposited Monolayer toward Dendrite-Free Zinc Anode
ACS Nano ( IF 17.1 ) Pub Date : 2022-06-13 , DOI: 10.1021/acsnano.2c01380
Yu Yan 1 , Chaozhu Shu 1 , Ting Zeng 1 , Xiaojuan Wen 1 , Sheng Liu 1 , Dehui Deng 2 , Ying Zeng 1
Affiliation  

Aqueous Zn batteries with ideal energy density and absolute safety are deemed the most promising candidates for next-generation energy storage systems. Nevertheless, stubborn dendrite formation and notorious parasitic reactions on the Zn metal anode have significantly compromised the Coulombic efficiency (CE) and cycling stability, severely impeding the Zn metal batteries from being deployed in the proposed applications. Herein, instead of random growth of Zn dendrites, a guided preferential growth of planar Zn layers is accomplished via atomic-scale matching of the surface lattice between the hexagonal close-packed (hcp) Zn(002) and face-centered cubic (fcc) Cu(100) crystal planes, as well as underpotential deposition (UPD)-enabled zincophilicity. The underlying mechanism of uniform Zn plating/stripping on the Cu(100) surface is demonstrated by ab initio molecular dynamics simulations and density functional theory calculations. The results show that each Zn atom layer is driven to grow along the exposed closest packed plane (002) in hcp Zn metal with a low lattice mismatch with Cu(100), leading to compact and planar Zn deposition. In situ optical visualization inspection is adopted to monitor the dynamic morphology evolution of such planar Zn layers. With this surface texture, the Zn anode exhibits exceptional reversibility with an ultrahigh Coulombic efficiency (CE) of 99.9%. The MnO2//Zn@Cu(100) full battery delivers long cycling stability over 548 cycles and outstanding specific energy and power density (112.5 Wh kg–1 even at 9897.1 W kg–1). This work is expected to address the issues associated with Zn metal anodes and promote the development of high-energy rechargeable Zn metal batteries.

中文翻译:

欠电位沉积单层实现无枝晶锌阳极的表面择优晶面生长

具有理想能量密度和绝对安全性的水系锌电池被认为是下一代储能系统最有希望的候选者。然而,Zn 金属阳极上顽固的枝晶形成和臭名昭著的寄生反应显着损害了库仑效率 (CE) 和循环稳定性,严重阻碍了 Zn 金属电池在拟议应用中的部署。在此,不是随机生长 Zn 枝晶,而是通过六方密排 (hcp) Zn(002) 和面心立方 (fcc) 之间的表面晶格的原子级匹配来实现平面 Zn 层的引导优先生长Cu(100) 晶面,以及欠电位沉积 (UPD) 启用的亲锌性。通过从头算分子动力学模拟和密度泛函理论计算证明了 Cu(100) 表面均匀镀锌/剥离的潜在机制。结果表明,在与 Cu(100) 具有低晶格失配的 hcp Zn 金属中,每个 Zn 原子层都被驱动沿着暴露的最紧密堆积平面 (002) 生长,从而导致紧凑和平面的 Zn 沉积。采用原位光学可视化检测来监测这种平面锌层的动态形态演变。凭借这种表面纹理,Zn 阳极表现出卓越的可逆性和 99.9% 的超高库仑效率 (CE)。二氧化锰 结果表明,在与 Cu(100) 具有低晶格失配的 hcp Zn 金属中,每个 Zn 原子层都被驱动沿着暴露的最紧密堆积平面 (002) 生长,从而导致紧凑和平面的 Zn 沉积。采用原位光学可视化检测来监测这种平面锌层的动态形态演变。凭借这种表面纹理,Zn 阳极表现出卓越的可逆性和 99.9% 的超高库仑效率 (CE)。二氧化锰 结果表明,在与 Cu(100) 具有低晶格失配的 hcp Zn 金属中,每个 Zn 原子层都被驱动沿着暴露的最紧密堆积平面 (002) 生长,从而导致紧凑和平面的 Zn 沉积。采用原位光学可视化检测来监测这种平面锌层的动态形态演变。凭借这种表面纹理,Zn 阳极表现出卓越的可逆性和 99.9% 的超高库仑效率 (CE)。二氧化锰2 //Zn@Cu(100) 全电池可提供超过 548 次循环的长期循环稳定性以及出色的比能量和功率密度(112.5 Wh kg –1甚至在 9897.1 W kg –1时)。这项工作有望解决与锌金属负极相关的问题,促进高能可充电锌金属电池的发展。
更新日期:2022-06-13
down
wechat
bug