当前位置: X-MOL 学术J. Synch. Investig. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On AFM Measurements of the Interaction Force Vector by Means of Interferometry, Optical Lever, and the Piezoresistive Method
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Pub Date : 2022-06-09 , DOI: 10.1134/s1027451022030028
A. V. Ankudinov

Abstract

In atomic force microscopy, the interaction of a probe with a sample is usually controlled by the angle of cantilever bending at a selected point on it using an optical lever. Such control is not designed to record all three components of the interaction-force vector. It is possible to reveal these components and the result of the force action, i.e., the displacement vector of the “nondeformable” probe of an “ideal” cantilever, by additional measurements of the deformation (by the piezoresistive method) or the amount of bending (by the interferometry method) at a selected point, or the bending angle at one more point on the cantilever. In this paper, we present the results of analytical calculation of the optimal location of these points on a cantilever for six combinations of the above three methods, which reduces the measurement error of the components of the force and displacement vectors to a minimum.



中文翻译:

干涉法、光杆法和压阻法对相互作用力矢量的 AFM 测量

摘要

在原子力显微镜中,探针与样品的相互作用通常由使用光学杠杆在其上选定点处的悬臂弯曲角度控制。这种控制并非旨在记录相互作用力矢量的所有三个分量。通过额外测量变形(通过压阻方法)或弯曲量,可以揭示这些分量和力作用的结果,即“理想”悬臂的“不可变形”探针的位移矢量(通过干涉测量法)在选定点处,或在悬臂上的另一个点处的弯曲角度。在本文中,我们给出了上述三种方法的六种组合对悬臂上这些点的最佳位置的解析计算结果,

更新日期:2022-06-09
down
wechat
bug