当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supramolecular bridging strategy enables high performance and stable organic-inorganic halide perovskite solar cells
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2022-06-07 , DOI: 10.1016/j.cej.2022.137431
Fengyou Wang , Xin Li , Haoyan Wang , Yue Gou , Shuo Yang , Donglai Han , Lili Yang , Lin Fan , Jinghai Yang , Federico Rosei

The manipulation of grain boundaries in polycrystalline perovskites is an indispensable consideration for the photovoltaic performance and environmental stability of solar cells, because perovskite films obtained by solution process will inevitably introduce many defects in the grain boundaries. Although additives based on small molecules have proven to be effective defect passivators, their high volatility and diffusibility cannot satisfy the stability requirements of perovskite films. As an upgraded approach, herein, we introduced a supramolecular bridging strategy with 2,5-diaminobenzotrifluorid (DTF) molecular binder as the repeating unit to form a supramolecular-perovskite composite. The supramolecular binder plays a role of bridging the perovskite crystal grains, passivating the traps states of the perovskite films and producing excellent environmental stability, which is superior to the conventional additive engineering. As a result, the power conversion efficiency of the MAPbI3 solar cell has been significantly increased from 18.8% to 21.0 %. The perovskite solar cells with S-DTF maintaining 93% of their original efficiency for over 30 days (∼70% humidity) in air ambient without encapsulation, exhibiting an excellent long-term stability. This will inspire a wider range of ideas beyond the regular additive engineering for improving the performance of polycrystalline perovskite-based photoelectronic devices.



中文翻译:

超分子桥接策略可实现高性能和稳定的有机-无机卤化物钙钛矿太阳能电池

多晶钙钛矿晶界的操控是太阳能电池光伏性能和环境稳定性不可缺少的考虑因素,因为通过溶液法获得的钙钛矿薄膜不可避免地会在晶界引入许多缺陷。尽管基于小分子的添加剂已被证明是有效的缺陷钝化剂,但它们的高挥发性和扩散性不能满足钙钛矿薄膜的稳定性要求。作为一种升级的方法,在此,我们引入了以 2,5-二氨基苯并三氟 (DTF) 分子粘合剂作为重复单元的超分子桥接策略,以形成超分子-钙钛矿复合材料。超分子粘合剂起到桥接钙钛矿晶粒的作用,钝化钙钛矿薄膜的陷阱状态并产生优异的环境稳定性,优于传统的添加剂工程。因此,MAPbI 的功率转换效率3太阳能电池已从18.8%显着提高到21.0%。具有 S-DTF 的钙钛矿太阳能电池在没有封装的情况下在空气环境中保持 93% 的原始效率超过 30 天(~70% 湿度),表现出优异的长期稳定性。这将激发超越常规添加剂工程的更广泛的想法,以提高多晶钙钛矿基光电器件的性能。

更新日期:2022-06-08
down
wechat
bug