当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2022-06-07 , DOI: 10.1016/j.cej.2022.137424
Jingnan Wu , Xia Guo , Minghai Xiong , Xinxin Xia , Qi Li , Jin Fang , Xin Yan , Qi Liu , Xinhui Lu , Ergang Wang , Donghong Yu , Maojie Zhang

It had been commonly accepted in the organic photovoltaic (OPV) community that subtle variations in the molecular structure of active layer materials would cause profound impacts on their aggregating structure and blend morphology and therefore the performance of such polymer solar cells (PSCs). Herein, we employed an electron-deficient building block 3,6-dithiophenyl-2-carboxylate pyrazine (DTCPz) for constructing one series of promising donor terpolymers of PMZ1, PMZ2, and PMZ3, respectively, gaining their relatively lower-lying highest occupied molecular orbital (HOMO) energy levels, more closed π-π stacking and enhanced crystallinity in thin films, and lower miscibility with acceptor Y6, in comparison with their parent polymer counterpart (namely PM6). Reaching DTCPz moieties up to 20% (mol/mol%) in its terpolymer composition, the resulting polymer (PMZ2) achieved more favorable phase separation with improved exciton dissociation, and charge transport and extraction. As result, an outstanding fill factor of 77.2% and therefore a promising power conversion efficiency of 17.8 % was achieved. Moreover, the corresponding device shows better thermal stability over the PM6-based one. This work suggests a facile method for significantly improving the thin film morphology of the active-layer materials via fine-tuning the chemical structure of electron-deficient units on the backbone of the wide bandgap donor polymer, therefore achieving enhanced photovoltaic performance and thermal stability for practical applications.



中文翻译:

调节含有羧酸盐-吡嗪的三元共聚物的纳米级形态,使有机太阳能电池的热稳定性提高 17.8%

有机光伏 (OPV) 社区普遍认为,活性层材料分子结构的细微变化会对它们的聚集结构和共混物形态产生深远影响,从而影响聚合物太阳能电池 (PSC) 的性能。在此,我们使用缺电子结构单元 3,6-二硫代苯基-2-羧酸吡嗪 (DTCPz) 分别构建了一系列有前景的 PMZ1、PMZ2 和 PMZ3 供体三元共聚物,获得了它们相对较低的最高占据分子与它们的母体聚合物对应物(即 PM6)相比,轨道 (HOMO) 能级、更封闭的 π-π 堆叠和薄膜中的结晶度增强,以及与受体 Y6 的混溶性更低。在其三元共聚物组合物中达到高达 20% (mol/mol%) 的 DTCPz 部分,所得聚合物 (PMZ2) 通过改进激子离解、电荷传输和提取实现了更有利的相分离。结果,实现了 77.2% 的出色填充因子,因此实现了 17.8% 的有希望的功率转换效率。此外,与基于 PM6 的器件相比,相应的器件显示出更好的热稳定性。这项工作提出了一种简便的方法,通过微调宽带隙供体聚合物主链上缺电子单元的化学结构,显着改善活性层材料的薄膜形态,从而提高光伏性能和热稳定性。实际应用。77.2% 的出色填充因子,因此实现了 17.8% 的有希望的功率转换效率。此外,与基于 PM6 的器件相比,相应的器件显示出更好的热稳定性。这项工作提出了一种简便的方法,通过微调宽带隙供体聚合物主链上缺电子单元的化学结构,显着改善活性层材料的薄膜形态,从而提高光伏性能和热稳定性。实际应用。77.2% 的出色填充因子,因此实现了 17.8% 的有希望的功率转换效率。此外,与基于 PM6 的器件相比,相应的器件显示出更好的热稳定性。这项工作提出了一种简便的方法,通过微调宽带隙供体聚合物主链上缺电子单元的化学结构,显着改善活性层材料的薄膜形态,从而提高光伏性能和热稳定性。实际应用。

更新日期:2022-06-08
down
wechat
bug