当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on a Novel Hybrid Thermal Network of Homopolar Inductor Machine
IEEE Transactions on Transportation Electrification ( IF 7 ) Pub Date : 2022-06-03 , DOI: 10.1109/tte.2022.3180084
Caiyong Ye 1 , Cong Deng 1 , Jiangtao Yang 2 , Yongzihao Dai 1 , Dezuan Yu 1 , Jianping Zhang 3
Affiliation  

The thermal analysis is necessary for the design and safe operation of the homopolar inductor machine (HIM) applied in the flywheel energy storage system (FESS). However, due to its unique three-dimensional (3-D) structure, the thermal analysis of HIM relies on the 3-D finite element analysis (FEA) or computational fluid dynamics (CFD), which is time-consuming and computationally inefficient. To facilitate the thermal analysis and design of HIM, a fast and accurate analytical model is essential. In this article, the novel 2-D and 3-D hybrid thermal networks combined with a coupled iterative analysis method are proposed to predict the temperature of HIM. First, the structure, operation principle, and material properties of HIM are illustrated. Second, the heat sources of HIM, including iron loss, rotor eddy current loss, rotor air friction loss, copper loss, and bearing loss, are fully analyzed and investigated. Third, the proposed hybrid thermal model (HTM) and coupled iterative analysis method are demonstrated and applied to predict its temperature. The proposed thermal model and analysis methods are explained in detail. The influences of different speeds and operation conditions on the temperature rise of HIM are analyzed based on the proposed thermal model and FEA. Finally, the temperature of an HIM prototype is tested, which proves the accuracy of FEA and the proposed method. The proposed HTM can quickly and accurately predict the temperature of HIM, which provides a new idea for the temperature prediction of this kind of machine.

中文翻译:

一种新型单极电感电机混合热网络的研究

热分析对于应用于飞轮储能系统 (FESS) 的单极电感电机 (HIM) 的设计和安全运行是必要的。然而,由于其独特的三维 (3-D) 结构,HIM 的热分析依赖于 3-D 有限元分析 (FEA) 或计算流体动力学 (CFD),耗时且计算效率低下。为了促进 HIM 的热分析和设计,快速准确的分析模型必不可少。在本文中,提出了结合耦合迭代分析方法的新型 2-D 和 3-D 混合热网络来预测 HIM 的温度。首先,阐述了 HIM 的结构、工作原理和材料特性。二、HIM的热源,包括铁损、转子涡流损耗、转子空气摩擦损耗、对铜损和轴承损耗进行了充分的分析和研究。第三,展示了所提出的混合热模型 (HTM) 和耦合迭代分析方法,并将其应用于预测其温度。详细解释了所提出的热模型和分析方法。基于所提出的热模型和有限元分析,分析了不同速度和操作条件对HIM温升的影响。最后,对HIM原型进行了温度测试,证明了有限元分析和所提方法的准确性。所提出的 HTM 可以快速准确地预测 HIM 的温度,为该类机器的温度预测提供了新的思路。所提出的混合热模型 (HTM) 和耦合迭代分析方法被证明并应用于预测其温度。详细解释了所提出的热模型和分析方法。基于所提出的热模型和有限元分析,分析了不同速度和操作条件对HIM温升的影响。最后,对HIM原型进行了温度测试,证明了有限元分析和所提方法的准确性。所提出的 HTM 可以快速准确地预测 HIM 的温度,为该类机器的温度预测提供了新的思路。所提出的混合热模型 (HTM) 和耦合迭代分析方法被证明并应用于预测其温度。详细解释了所提出的热模型和分析方法。基于所提出的热模型和有限元分析,分析了不同速度和操作条件对HIM温升的影响。最后,对HIM原型进行了温度测试,证明了有限元分析和所提方法的准确性。所提出的 HTM 可以快速准确地预测 HIM 的温度,为该类机器的温度预测提供了新的思路。基于所提出的热模型和有限元分析,分析了不同速度和操作条件对HIM温升的影响。最后,对HIM原型进行了温度测试,证明了有限元分析和所提方法的准确性。所提出的 HTM 可以快速准确地预测 HIM 的温度,为该类机器的温度预测提供了新的思路。基于所提出的热模型和有限元分析,分析了不同速度和操作条件对HIM温升的影响。最后,对HIM原型进行了温度测试,证明了有限元分析和所提方法的准确性。所提出的 HTM 可以快速准确地预测 HIM 的温度,为该类机器的温度预测提供了新的思路。
更新日期:2022-06-03
down
wechat
bug