当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DNN-Assisted Particle-Based Bayesian Joint Synchronization and Localization
IEEE Transactions on Communications ( IF 8.3 ) Pub Date : 2022-06-03 , DOI: 10.1109/tcomm.2022.3180069
Meysam Goodarzi 1 , Vladica Sark 2 , Nebojsa Maletic 2 , Jesus Gutierrez 2 , Giuseppe Caire 3 , Eckhard Grass 1
Affiliation  

In this work, we propose a Deep neural network-assisted Particle Filter-based (DePF) approach to address the Mobile User (MU) joint synchronization and localization (sync&loc) problem in ultra-dense networks. In particular, DePF deploys an asymmetric time-stamp exchange mechanism between the MUs and the Access Points (APs), which, traditionally, provides us with information about the MUs’ clock offset and skew. However, information about the distance between an AP and an MU is also intrinsic to the propagation delay experienced by the exchanged time-stamps. In addition, to estimate the angle of arrival of the received synchronization packets, DePF draws on the multiple signal classification algorithm that is fed with the Channel Impulse Response (CIR) experienced by the sync packets. The CIR is also leveraged to determine the link condition, i.e. Line-of-Sight (LoS) or Non-LoS. Finally, to perform joint sync&loc, DePF capitalizes on particle Gaussian mixtures that allow for a hybrid particle-based and parametric Bayesian Recursive Filtering (BRF) fusion of the aforementioned pieces of information and, thus, jointly estimates the position and clock parameters of the MUs. The simulation results verify the superiority of the proposed algorithm over the state-of-the-art schemes, especially that of the extended Kalman filter- and linearized BRF-based joint sync&loc. In particular, only drawing on the synchronization time-stamp exchange and CIRs from a single AP, for 90% of the cases, the absolute position and clock offset estimation error remain below 1 meter and 2 nanoseconds, respectively.

中文翻译:

DNN 辅助的基于粒子的贝叶斯联合同步和定位

在这项工作中,我们提出了一种基于深度神经网络辅助的粒子滤波器 (DePF) 方法来解决超密集网络中的移动用户 (MU) 联合同步和定位 (sync&loc) 问题。特别是,DePF 在 MU 和接入点 (AP) 之间部署了一种不对称的时间戳交换机制,传统上,该机制为我们提供了有关 MU 时钟偏移和偏斜的信息。然而,关于 AP 和 MU 之间距离的信息也是交换时间戳所经历的传播延迟所固有的。此外,为了估计接收到的同步数据包的到达角,DePF 利用了多信号分类算法,该算法由同步数据包经历的信道脉冲响应 (CIR) 馈送。CIR 也用于确定链路条件,即。e. 视线 (LoS) 或非 LoS。最后,为了执行联合同步和定位,DePF 利用粒子高斯混合,允许混合基于粒子和参数的贝叶斯递归过滤 (BRF) 融合上述信息,从而联合估计 MU 的位置和时钟参数. 仿真结果验证了所提算法优于现有技术方案的优越性,尤其是扩展卡尔曼滤波器和基于线性化 BRF 的联合同步与定位算法的优越性。特别是,仅利用来自单个 AP 的同步时间戳交换和 CIR,对于 90% 的情况,绝对位置和时钟偏移估计误差分别保持在 1 米和 2 纳秒以下。DePF 利用粒子高斯混合,允许基于混合粒子和参数贝叶斯递归过滤 (BRF) 融合上述信息,从而联合估计 MU 的位置和时钟参数。仿真结果验证了所提算法优于现有技术方案的优越性,尤其是扩展卡尔曼滤波器和基于线性化 BRF 的联合同步与定位算法的优越性。特别是,仅利用来自单个 AP 的同步时间戳交换和 CIR,对于 90% 的情况,绝对位置和时钟偏移估计误差分别保持在 1 米和 2 纳秒以下。DePF 利用粒子高斯混合,允许基于混合粒子和参数贝叶斯递归过滤 (BRF) 融合上述信息,从而联合估计 MU 的位置和时钟参数。仿真结果验证了所提算法优于现有技术方案的优越性,尤其是扩展卡尔曼滤波器和基于线性化 BRF 的联合同步与定位算法的优越性。特别是,仅利用来自单个 AP 的同步时间戳交换和 CIR,对于 90% 的情况,绝对位置和时钟偏移估计误差分别保持在 1 米和 2 纳秒以下。
更新日期:2022-06-03
down
wechat
bug