当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Least-Squares Equalizer Demonstrations Using a Full-Digital Bandwidth Sub-Nyquist-Sampled Wideband Beamformer on an RFSoC
IEEE Transactions on Aerospace and Electronic Systems ( IF 4.4 ) Pub Date : 2022-05-23 , DOI: 10.1109/taes.2022.3176844
Kyle Steiner 1 , Mark Yeary 2
Affiliation  

The radio frequency system-on-a-chip (RFSoC) has recently become a viable candidate for completely replacing traditional analog and digital front ends, facilitating the development of wideband phased-array systems where the modern-day RFSoC takes the comprehensive, dominate role in the architecture of the array. Wideband phased-array systems require high-fidelity compensation techniques capable of correcting imbalanced and dispersive channel effects for effective beamforming. This article provides solutions to these challenges by designing a wideband equalizer for a sub-Nyquist-sampled 1.6-GHz S -band phased-array system implemented on a Xilinx 8-channel RFSoC, whose analog-to-digital converters (ADC) operate at 4 gigasamples per second. In brief, an RFSoC is a unique, state-of-the-art, highly integrated device that incorporates a field programmable gate array, high-speed ADCs and digital-to-analog converters with a system-on-a-chip architecture on a single monolithic device. By definition, true time delay beamsteering can be implemented digitally via a combination of integer-sample delays and fractional-sample delay finite impulse response filters. By modifying the filter structure of the fractional-sample delay filter bank to support complex coefficients, channel equalization is integrated with fractional-sample delay filters to mitigate undesired channel effects. For the first time, to the best of our knowledge, this article has developed an equalizer design methodology for an uncalibrated 8-element RFSoC-based sub-Nyquist-sampled wideband beamformer. Lab measurements confirm efficacy.

中文翻译:

在 RFSoC 上使用全数字带宽亚奈奎斯特采样宽带波束形成器的最小二乘均衡器演示

射频片上系统 (RFSoC) 最近已成为完全替代传统模拟和数字前端的可行候选者,促进了宽带相控阵系统的开发,其中现代 RFSoC 发挥了全面的主导作用在数组的架构中。宽带相控阵系统需要高保真补偿技术,能够校正不平衡和色散信道效应以实现有效的波束形成。本文通过为亚奈奎斯特采样的 1.6-GHz 设计宽带均衡器来提供应对这些挑战的解决方案在 Xilinx 8 通道 RFSoC 上实现的 S 波段相控阵系统,其模数转换器 (ADC) 以每秒 4 千兆样本的速度运行。简而言之,RFSoC 是一种独特的、最先进的、高度集成的设备,它结合了现场可编程门阵列、高速 ADC 和数模转换器以及片上系统架构一个单一的单片设备。根据定义,真正的时间延迟波束控制可以通过整数样本延迟和分数样本延迟有限脉冲响应滤波器的组合以数字方式实现。通过修改分数样本延迟滤波器组的滤波器结构以支持复数系数,通道均衡与分数样本延迟滤波器集成以减轻不需要的通道效应。据我们所知,这是第一次,本文为未校准的基于 8 元件 RFSoC 的亚奈奎斯特采样宽带波束形成器开发了一种均衡器设计方法。实验室测量确认功效。
更新日期:2022-05-23
down
wechat
bug