当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Biasing for Improved On-Orbit Total-Dose Lifetimes of Commercial Electronic Devices
IEEE Transactions on Aerospace and Electronic Systems ( IF 4.4 ) Pub Date : 2022-02-07 , DOI: 10.1109/taes.2022.3148974
Maximillian Holliday 1 , Thomas A. Heuser 1 , Zachary Manchester 2 , Debbie G. Senesky 3
Affiliation  

The survivability of microelectronic devices in ionizing radiation environments drives spacecraft design, capability, mission scope, and cost. This article exploits the periodic nature of many space radiation environments to extend device lifetimes without additional shielding or modifications to the semiconductor architecture. We propose a technique for improving component lifetimes through reduced total-dose accumulation by modulating device bias during periods of intense irradiation. Simulation of this “dynamic biasing” technique applied to single-transistor devices in a typical low-Earth orbit results in an increase in component lifetime from 114 to 477 days (318% improvement) at the expense of 5% down time (95% duty cycle). The biasing technique is also experimentally demonstrated using gamma radiation to study three commercial devices spanning a range of integrated circuit complexity in 109- and 256-rad/min dose rate conditions. The demonstrated improvements in device lifetimes using the proposed dynamic biasing technique lay a foundation for more effective use of modern microelectronics for space applications. Analogous to the role real-time temperature monitoring plays in maximizing modern processor performance, the proposed dynamic biasing technique is a means of intelligently responding to the radiation environment and capable of becoming an integral tool in optimizing component lifetimes in space.

中文翻译:

改进商业电子设备在轨总剂量寿命的动态偏置

微电子设备在电离辐射环境中的生存能力推动了航天器的设计、能力、任务范围和成本。本文利用许多空间辐射环境的周期性特性来延长器件寿命,而无需额外屏蔽或修改半导体架构。我们提出了一种通过在强烈辐照期间调节设备偏差来减少总剂量累积来提高组件寿命的技术。对应用于典型近地轨道中的单晶体管器件的这种“动态偏置”技术进行仿真,可将组件寿命从 114 天增加到 477 天(提高 318%),但代价是 5% 的停机时间(95% 占空比)循环)。在 109 和 256 rad/min 剂量率条件下,偏置技术也通过伽马辐射进行了实验证明,以研究跨越一系列集成电路复杂性的三个商业设备。使用所提出的动态偏置技术所证明的器件寿命改进为更有效地将现代微电子技术用于空间应用奠定了基础。类似于实时温度监测在最大化现代处理器性能方面所起的作用,所提出的动态偏置技术是一种智能响应辐射环境的方法,并且能够成为优化空间组件寿命的一个不可或缺的工具。使用所提出的动态偏置技术所证明的器件寿命改进为更有效地将现代微电子技术用于空间应用奠定了基础。类似于实时温度监测在最大化现代处理器性能方面所起的作用,所提出的动态偏置技术是一种智能响应辐射环境的方法,并且能够成为优化空间组件寿命的一个不可或缺的工具。使用所提出的动态偏置技术所证明的器件寿命改进为更有效地将现代微电子技术用于空间应用奠定了基础。类似于实时温度监测在最大化现代处理器性能方面所起的作用,所提出的动态偏置技术是一种智能响应辐射环境的方法,并且能够成为优化空间组件寿命的一个不可或缺的工具。
更新日期:2022-02-07
down
wechat
bug