当前位置: X-MOL 学术Quantum Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A scalable helium gas cooling system for trapped-ion applications
Quantum Science and Technology ( IF 6.7 ) Pub Date : 2022-03-29 , DOI: 10.1088/2058-9565/ac5d7d
F R Lebrun-Gallagher 1, 2 , N I Johnson 1 , M Akhtar 1, 2 , S Weidt 1, 2 , D Bretaud 1, 3 , S J Hile 1 , A Owens 1 , F Bonus 2, 4 , W K Hensinger 1, 2
Affiliation  

Abstract Microfabricated ion-trap devices offer a promising pathway towards scalable quantum computing. Research efforts have begun to focus on the engineering challenges associated with developing large-scale ion-trap arrays and networks. However, increasing the size of the array and integrating on-chip electronics can drastically increase the power dissipation within the ion-trap chips. This leads to an increase in the operating temperature of the ion-trap and limits the device performance. Therefore, effective thermal management is an essential consideration for any large-scale architecture. Presented here is the development of a modular cooling system designed for use with multiple ion-trapping experiments simultaneously. The system includes an extensible cryostat that permits scaling of the cooling power to meet the demands of a large network. Following experimental testing on two independent ion-trap experiments, the cooling system is expected to deliver a net cooling power of 111 W at ∼70 K to up to four experiments. The cooling system is a step towards meeting the practical challenges of operating large-scale quantum computers with many qubits.

中文翻译:

用于捕获离子应用的可扩展氦气冷却系统

摘要 微型制造的离子阱设备为可扩展的量子计算提供了一条有希望的途径。研究工作已经开始关注与开发大规模离子阱阵列和网络相关的工程挑战。然而,增加阵列的尺寸和集成片上电子器件会大大增加离子阱芯片内的功耗。这会导致离子阱的工作温度升高并限制器件性能。因此,有效的热管理是任何大型架构的基本考虑因素。这里介绍的是模块化冷却系统的开发,该系统设计用于同时进行多个离子捕获实验。该系统包括一个可扩展的低温恒温器,可扩展冷却功率以满足大型网络的需求。在对两个独立的离子阱实验进行实验测试之后,冷却系统预计将在 70 K 时为多达四个实验提供 111 W 的净冷却功​​率。冷却系统是朝着应对操作具有许多量子位的大型量子计算机的实际挑战迈出的一步。
更新日期:2022-03-29
down
wechat
bug