当前位置: X-MOL 学术Optica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Additive manufacturing for the development of optical/photonic systems and components
Optica ( IF 10.4 ) Pub Date : 2022-06-09 , DOI: 10.1364/optica.451642
Gregory Berglund 1 , Anna Wisniowiecki 2, 3 , John Gawedzinski 1 , Brian Applegate 3 , Tomasz S. Tkaczyk 1
Affiliation  

The ambition of this review is to provide an up-to-date synopsis of the state of 3D printing technology for optical and photonic components, to gauge technological advances, and to discuss future opportunities. While a range of approaches have been developed and some have been commercialized, no single approach can yet simultaneously achieve small detail and low roughness at large print volumes and speed using multiple materials. Instead, each approach occupies a niche where the components/structures that can be created fit within a relatively narrow range of geometries with limited material choices. For instance, the common Fused Deposition Modeling (FDM) approach is capable of large print volumes at relatively high speeds but lacks the resolution needed for small detail ({\gt}{{100}}\;{\rm{\unicode{x00B5}{\rm m}}}) with low roughness ({\gt}{{9}}\;{\rm{\unicode{x00B5}{\rm m}}}). At the other end of the spectrum, two-photon polymerization can achieve roughness ({\lt}{{15}}\;{\rm{nm}}) and detail ({\lt}{{140}}\;{\rm{nm}}) comparable to commercial molded and polished optics. However, the practical achievable print volume and speed are orders of magnitude smaller and slower than the FDM approach. Herein, we discuss the current state-of-the-art 3D printing approaches, noting the capability of each approach and prognosticate on future innovations that could close the gaps in performance.

中文翻译:

用于开发光学/光子系统和组件的增材制造

本次审查的目标是提供光学和光子组件 3D 打印技术状态的最新概要,以衡量技术进步,并讨论未来的机遇。虽然已经开发了一系列方法,其中一些已经商业化,但没有一种方法可以同时使用多种材料在大打印量和速度下实现小细节和低粗糙度。相反,每种方法都占据了一席之地,其中可以创建的组件/结构适合相对狭窄的几何形状范围,材料选择有限。例如,常见的熔融沉积建模 (FDM) 方法能够以相对较高的速度打印大容量,但缺乏小细节所需的分辨率 ( {\gt}{{100}}\;{\rm{\unicode{x00B5 }{\rm }}}) 具有低粗糙度 ( {\gt}{{9}}\;{\rm{\unicode{x00B5}{\rm m}}}​​ )。在光谱的另一端,双光子聚合可以实现粗糙度({\lt}{{15}}\;{\rm{nm}})和细节({\lt}{{140}}\;{ \rm{nm}})可与商业模制和抛光光学器件相媲美。然而,实际可实现的打印量和速度比 FDM 方法小和慢几个数量级。在这里,我们讨论了当前最先进的 3D 打印方法,指出了每种方法的能力,并预测了可以缩小性能差距的未来创新。
更新日期:2022-06-09
down
wechat
bug