当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2022-06-07 , DOI: 10.1021/acs.accounts.2c00135
Amrita Sikder 1 , Cem Esen 2 , Rachel K O'Reilly 1
Affiliation  

The design and fabrication of synthetic self-assembled systems that can mimic some biological features require exquisitely sophisticated components that make use of supramolecular interactions to attain enhanced structural and functional complexity. In nature, nucleobase interactions play a key role in biological functions in living organisms, including transcription and translation processes. Inspired by nature, scientists are progressively exploring nucleobase synthons to create a diverse range of functional systems with a plethora of nanostructures by virtue of molecular-recognition-directed assembly and flexible programmability of the base-pairing interactions. To that end, nucleobase-functionalized molecules and macromolecules are attracting great attention because of their versatile structures with smart and adaptive material properties such as stimuli responsiveness, interaction with external agents, and ability to repair structural defects. In this regard, a range of nucleobase-interaction-mediated hierarchical self-assembled systems have been developed to obtain biomimetic materials with unique properties. For example, a new “grafting to” strategy utilizing complementary nucleobase interactions has been demonstrated to temporarily control the functional group display on micellar surfaces. In a different approach, complementary nucleobase interactions have been explored to enable morphological transitions in functionalized diblock copolymer assembly. It has been demonstrated that complementary nucleobase interactions can drive the morphological transformation to produce highly anisotropic nanoparticles by controlling the assembly processes at multiple length scales. Furthermore, nucleobase-functionalized bottle brush polymers have been employed to generate stimuli-responsive hierarchical assembly. Finally, such interactions have been exploited to induce biomimetic segregation in polymer self-assembly, which has been employed as a template to synthesize polymers with narrow polydispersity. It is evident from these examples that the optimal design of molecular building blocks and precise positioning of the nucleobase functionality are essential for fabrication of complex supramolecular assemblies. While a considerable amount of research remains to be explored, our studies have demonstrated the potential of nucleobase-interaction-mediated supramolecular assembly to be a promising field of research enabling the development of biomimetic materials.

中文翻译:

核碱基相互作用导向的仿生超分子自组装

可以模拟某些生物特征的合成自组装系统的设计和制造需要非常复杂的组件,这些组件利用超分子相互作用来获得增强的结构和功能复杂性。在自然界中,核碱基相互作用在生物体的生物学功能中起着关键作用,包括转录和翻译过程。受大自然的启发,科学家们正在逐步探索核碱基合成子,以利用分子识别导向的组装和碱基配对相互作用的灵活可编程性来创建具有大量纳米结构的多种功能系统。为此,核碱基功能化分子和大分子因其具有智能和适应性材料特性(如刺激响应性、与外部试剂的相互作用以及修复结构缺陷的能力)的多功能结构而备受关注。在这方面,已经开发了一系列核碱基相互作用介导的分层自组装系统,以获得具有独特性能的仿生材料。例如,一种利用互补核碱基相互作用的新“嫁接”策略已被证明可以暂时控制胶束表面的官能团展示。在另一种方法中,已经探索了互补的核碱基相互作用,以实现功能化二嵌段共聚物组装中的形态转变。已经证明,互补的核碱基相互作用可以通过控制多个长度尺度的组装过程来驱动形态转变以产生高度各向异性的纳米颗粒。此外,核碱基功能化的瓶刷聚合物已被用于产生刺激响应的分层组装。最后,已经利用这种相互作用来诱导聚合物自组装中的仿生分离,这已被用作合成具有窄多分散性的聚合物的模板。从这些例子中可以明显看出,分子结构单元的优化设计和核碱基功能的精确定位对于制造复杂的超分子组件至关重要。虽然仍有大量研究有待探索,
更新日期:2022-06-07
down
wechat
bug