当前位置: X-MOL 学术Biogeochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phosphorus availability and arbuscular mycorrhizal fungi limit soil C cycling and influence plant responses to elevated CO2 conditions
Biogeochemistry ( IF 4 ) Pub Date : 2022-06-07 , DOI: 10.1007/s10533-022-00939-3
L. Castañeda-Gómez , J. R. Powell , E. Pendall , Y. Carrillo

Soil organic matter (SOM) decomposition and organic phosphorus (P) cycling may help sustain plant productivity under elevated CO2 (eCO2) and low-P conditions. Arbuscular mycorrhizal (AM) fungi and their role in P-acquisition and SOM decomposition may become more relevant in these conditions. Yet, experimental evidence of AM fungi and P availability interactive effects on soil carbon (C) cycling under eCO2 is scarce with the potential mechanisms of this control being poorly understood. We performed a pot experiment with soil and a grass from a low-P ecosystem where plant biomass and soil C cycling have been mostly unresponsive to eCO2. We manipulated AM fungi, P, and CO2 levels and assessed their impacts on soil C cycling and plant growth using continuous 13C plant labelling to isolate and measure short-term changes in total and SOM-derived fractions of respired CO2, dissolved organic C (DOC) and microbial biomass (MBC), as relevant components of the soil C cycle. Increases in SOM decomposition and microbial C use were hypothesised to support plant growth under eCO2 and low-P with AM fungi intensifying this effect. However, we did not detect simultaneous significant impacts of the three experimental factors. We observed instead increased root biomass and nutrient uptake with eCO2 and AM presence and lower SOM-derived DOC and MBC with low-P, decreasing further with AM inoculation. Taken together, our findings in this model plant-soil system suggest that, AM fungi can support root biomass growth and nutrient uptake under eCO2 and protect the SOM pool against decomposition even in low-P conditions. Contrary to reports from N-limited ecosystems, our results allow us to conclude that C and P biogeochemical cycles may not become coupled to sustain an eCO2 fertilisation effect and that the role of AM fungi protecting the SOM pool is likely driven by competitive interactions with saprotrophic communities over nutrients.



中文翻译:

磷的有效性和丛枝菌根真菌限制了土壤碳循环并影响植物对升高的二氧化碳条件的反应

土壤有机质 (SOM) 分解和有机磷 (P) 循环可能有助于在 CO 2 (eCO 2 ) 升高和低磷条件下维持植物生产力。丛枝菌根 (AM) 真菌及其在 P 获取和 SOM 分解中的作用可能在这些条件下变得更加相关。然而,在 eCO 2下 AM 真菌和 P 有效性对土壤碳 (C) 循环的交互影响的实验证据很少,这种控制的潜在机制知之甚少。我们对来自低磷生态系统的土壤和草进行了盆栽实验,其中植物生物量和土壤碳循环对 eCO 2几乎没有反应。我们操纵了 AM 真菌、P 和 CO 2水平并评估其对土壤碳循环和植物生长的影响,使用连续的13 C 植物标记来分离和测量呼吸 CO 2、溶解有机碳 (DOC) 和微生物生物量 (MBC)的总和 SOM 衍生部分的短期变化,作为土壤碳循环的相关成分。假设 SOM 分解和微生物 C 使用的增加支持植物在 eCO 2和低 P 下的生长,而 AM 真菌增强了这种效应。然而,我们没有检测到三个实验因素的同时显着影响。相反,我们观察到 eCO 2增加了根生物量和养分吸收和 AM 的存在以及低 P 的 SOM 衍生的 DOC 和 MBC,随着 AM 接种进一步降低。总之,我们在这个模型植物-土壤系统中的研究结果表明,AM 真菌可以支持 eCO 2下的根系生物量生长和养分吸收,并且即使在低磷条件下也可以保护 SOM 池免受分解。与来自 N 限制生态系统的报告相反,我们的结果使我们能够得出结论,C 和 P 生物地球化学循环可能不会耦合以维持 eCO 2施肥效应,并且 AM 真菌保护 SOM 池的作用可能是由与营养物质上的腐生群落。

更新日期:2022-06-08
down
wechat
bug