当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic step formation on porous ZnO nanobelts: remarkable promotion of acetone gas detection up to the parts per trillion level
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2022-06-06 , DOI: 10.1039/d2ta02789e
Kyusung Kim 1 , Pil gyu Choi 1 , Toshio Itoh 1 , Yoshitake Masuda 1
Affiliation  

Atomic defects, such as steps and kinks, can promote the efficiency of chemical reactions. These defects provide coordinatively unsaturated sites (CUSs) in metal oxides and the CUSs react with other molecules with relatively lower energy. Thus, decoration with atomic step structures can be a cost-effective strategy that can replace novel metal catalysts to enhance the gas sensing performance. Herein, atomic step structure decorated porous ZnO nanobelts were synthesized for acetone gas sensing below the parts-per-trillion (ppt, 10−12) level. Numerous atomic step structures could be formed by removing H and F atoms that occupied a high atomic ratio and a low weight ratio, during the conversion process of ZnOHF. Atomic step structures on ZnO allow an outstanding sensitivity, i.e., detection up to 200 ppt, and its theoretical limit of detection (LOD) was 72 ppt. This result was due to the edge of the atomic step that promotes electron transfer and induces oxygen chemisorption by restricting the diffusion on the flat surface. The atomic defect engineering on the metal oxide by conversion from metal hydroxide fluoride will trigger the fabrication of extremely sensitive sensing materials that do not require novel metal catalysts.

中文翻译:

多孔 ZnO 纳米带上的原子台阶形成:显着促进丙酮气体检测达到万亿分之几级

原子缺陷,例如台阶和扭结,可以提高化学反应的效率。这些缺陷在金属氧化物中提供了配位不饱和位点 (CUS),并且 CUS 与具有相对较低能量的其他分子发生反应。因此,具有原子台阶结构的装饰可以是一种具有成本效益的策略,可以替代新型金属催化剂以提高气体传感性能。在此,合成了原子阶梯结构装饰的多孔ZnO纳米带,用于低于万亿分之一(ppt,10 -12)水平的丙酮气体传感。在 ZnOHF 的转化过程中,通过去除占据高原子比和低重量比的 H 和 F 原子,可以形成许多原子台阶结构。ZnO 上的原子台阶结构具有出色的灵敏度,,检测高达 200 ppt,其理论检测限 (LOD) 为 72 ppt。该结果是由于原子台阶的边缘通过限制平面上的扩散来促进电子转移并诱导氧化学吸附。通过从金属氢氧化物氟化物转化金属氧化物的原子缺陷工程将触发不需要新型金属催化剂的极其敏感的传感材料的制造。
更新日期:2022-06-06
down
wechat
bug