当前位置: X-MOL 学术IEEE Trans. NanoBiosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dielectrically Modulated III-V Compound Semiconductor Based Pocket Doped Tunnel FET for Label Free Biosensing Applications
IEEE Transactions on NanoBioscience ( IF 3.9 ) Pub Date : 2022-05-30 , DOI: 10.1109/tnb.2022.3178763
Shazia Rashid 1 , Faisal Bashir 1 , Farooq A Khanday 1 , M. Rafiq Beigh 2
Affiliation  

In this paper, a novel structure of double gate tunnel FET has been proposed and simulated for biosensing applications. The device uses III-V compound semiconductors and an n+ doped pocket at the source channel junction. Biomolecules of different dielectric constants (K) with different charge densities (Nbio), both negative and positive, are inserted in the nano-gap cavities (15 nm $\times1.5$ nm) that have been created under gates near source channel junction to capture biomolecules. From extensive 2D simulations, ION sensitivity of ${4.351} \times {10}^{{8}}/{1.03} \times {10}^{{8}}/{1.514} \times {10}^{{9}}$ , subthreshold swing sensitivity of 15.67/20.21/18.57 mV/dec, and threshold voltage sensitivity of 18/12/23 mV for neutral (K = 12)/negatively charged biomolecules ( $\text{N}_{\text {bio}} = - {1} \times {10}^{{12}}$ C/cm2, K = 12)/positively charged biomolecules ( $\text{N}_{\text {bio}} = + {1} \times {10}^{{12}}$ C/cm2, K = 12) respectively has been observed. Also, transconductance sensitivity of ${9.74} \times {10}^{{7}}$ and ION/IOFF sensitivity of ${5.255} \times {10}^{{8}}$ for neutral biomolecules (K = 12) has been calculated. Furthermore, the device performance with one-third filled cavities, two-third filled cavities and fully filled cavities has also been studied. The performance of the proposed biosensor has been compared with the previously published work and it has been observed that the sensitivity of the proposed biosensor is 100 times better than the best reported biosensor.

中文翻译:

用于无标记生物传感应用的基于介质调制 III-V 化合物半导体的袖珍型掺杂隧道 FET

在本文中,针对生物传感应用提出并模拟了一种新型双栅极隧道 FET 结构。该器件在源通道结处使用 III-V 族化合物半导体和 n+ 掺杂袋。具有不同电荷密度 (Nbio) 的不同介电常数 (K) 的生物分子,包括负电荷和正电荷,被插入纳米间隙腔 (15 nm $\times1.5$nm) 已在源通道结附近的门下创建以捕获生物分子。从广泛的 2D 模拟中,离子灵敏度 ${4.351} \times {10}^{{8}}/{1.03} \times {10}^{{8}}/{1.514} \times {10}^{{9}}$ ,亚阈值摆动灵敏度为 15.67/20.21/18.57 mV/dec,阈值电压灵敏度为 18/12/23 mV,用于中性 (K = 12)/带负电的生物分子 ( $\text{N}_{\text {bio}} = - {1} \times {10}^{{12}}$C/cm2, K = 12)/带正电荷的生物分子( $\text{N}_{\text {bio}} = + {1} \times {10}^{{12}}$C/cm2, K = 12) 分别被观察到。此外,跨导灵敏度 ${9.74} \times {10}^{{7}}$和 ION/IOFF 灵敏度 ${5.255} \times {10}^{{8}}$已经计算了中性生物分子 (K = 12)。此外,还研究了三分之一填充腔、三分之二填充腔和全填充腔的器件性能。所提出的生物传感器的性能已与先前发表的工作进行了比较,并且观察到所提出的生物传感器的灵敏度比报道的最佳生物传感器好 100 倍。
更新日期:2022-05-30
down
wechat
bug