当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genesis and tuning of ferromagnetism in SnO2 semiconductor nanostructures: Comprehensive review on size, morphology, magnetic properties and DFT investigations
Progress in Materials Science ( IF 37.4 ) Pub Date : 2022-05-31 , DOI: 10.1016/j.pmatsci.2022.100970
D. Manikandan , Ramaswamy Murugan

Wide bandgap oxide semiconductors with controllable sizes are an interesting class of nanomaterials due to their applications in spintronic and magneto-optical devices. In recent times, tin dioxide (SnO2) an important class of n-type wide-band gap semiconductor in the nanoscale regime, has drawn considerable research interest owing to high optical transparency, high chemical/thermal stability and controllable optical and magnetic properties. Although bulk SnO2 is diamagnetic due to lack of unpaired electrons, SnO2 nanostructures with different morphology rope the formation of inherent defects and contribute defects induced ferromagnetism. Besides morphology-dependent magnetic properties, transition metal doping into the nanoscale SnO2 crystal lattice endows tuneable magnetic properties. Here, we outline the synthesis strategies of SnO2 based nanostructures with different morphology, including quantum dot, nanowire, nanotube, nanosheet, 3D-hierarchal flower-like structure and thin film. In addition to the pristine SnO2 nanostructures, size, morphological and doping repercussions on the magnetic properties of single and double transition metal (TM)-doped SnO2 nanostructures are also reviewed. Density functional theory (DFT) investigation of pristine and TM-doped SnO2 systems is reviewed and the correlations between certain experimental results are explored. Finally, an outlook and challenges in understanding the basis of origin and control of ferromagnetism in SnO2-based nanostructures are conferred.



中文翻译:

SnO2 半导体纳米结构中铁磁性的起源和调整:对尺寸、形态、磁性和 DFT 研究的全面回顾

具有可控尺寸的宽带隙氧化物半导体是一类有趣的纳米材料,因为它们在自旋电子和磁光器件中的应用。近年来,二氧化锡(SnO 2)是一类重要的纳米级n型宽禁带半导体,由于其高光学透明性、高化学/热稳定性和可控的光学和磁性而引起了广泛的研究兴趣。尽管由于缺乏不成对电子,块状SnO 2是抗磁性的,但具有不同形态的SnO 2纳米结构会形成固有缺陷并有助于缺陷诱导铁磁性。除了与形态相关的磁性外,过渡金属掺杂到纳米级 SnO 2中晶格赋予了可调谐的磁性。在这里,我们概述了具有不同形态的SnO 2纳米结构的合成策略,包括量子点、纳米线、纳米管、纳米片、3D-分层花状结构和薄膜。除了原始的 SnO 2纳米结构外,还回顾了尺寸、形态和掺杂对单和双过渡金属 (TM) 掺杂的 SnO 2纳米结构的磁性的影响。回顾了原始和 TM 掺杂 SnO 2系统的密度泛函理论 (DFT) 研究,并探讨了某些实验结果之间的相关性。最后,了解 SnO 中铁磁性的起源和控制基础的前景和挑战赋予了基于2的纳米结构。

更新日期:2022-05-31
down
wechat
bug