当前位置: X-MOL 学术Rev. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities
Reviews in Chemical Engineering ( IF 4.7 ) Pub Date : 2022-05-20 , DOI: 10.1515/revce-2021-0046
Oranso T. Mahlangu 1 , Machawe M. Motsa 1 , Thabo I. Nkambule 1 , Bhekie B. Mamba 1
Affiliation  

This work critically reviews the application of various membrane separation processes (MSPs) in treating water polluted with trace organic compounds (TOrCs) paying attention to nanofiltration (NF), reverse osmosis (RO), membrane bioreactor (MBR), forward osmosis (FO), and membrane distillation (MD). Furthermore, the focus is on loopholes that exist when investigating mechanisms through which membranes reject/retain TOrCs, with the emphasis on the characteristics of the model TOrCs which would facilitate the identification of all the potential mechanisms of rejection. An explanation is also given as to why it is important to investigate rejection using real water samples, especially when aiming for industrial application of membranes with novel materials. MSPs such as NF and RO are prone to fouling which often leads to lower permeate flux and solute rejection, presumably due to cake-enhanced concentration polarisation (CECP) effects. This review demonstrates why CECP effects are not always the reason behind the observed decline in the rejection of TOrCs by fouled membranes. To mitigate for fouling, researchers have often modified the membrane surfaces by incorporating nanoparticles. This review also attempts to explain why nano-engineered membranes have not seen a breakthrough at industrial scale. Finally, insight is provided into the possibility of harnessing solar and wind energy to drive energy intensive MSPs. Focus is also paid into how low-grade energy could be stored and applied to recover diluted draw solutions in FO mode.

中文翻译:

膜工艺排斥痕量有机化合物:机制、挑战和机遇

这项工作批判性地回顾了各种膜分离工艺 (MSPs) 在处理微量有机化合物 (TOrCs) 污染的水中的应用,重点关注纳滤 (NF)、反渗透 (RO)、膜生物反应器 (MBR)、正向渗透 (FO) , 和膜蒸馏 (MD)。此外,重点是研究膜排斥/保留 TOrC 的机制时存在的漏洞,重点是模型 TOrC 的特征,这将有助于识别所有潜在的排斥机制。还解释了为什么使用真实水样研究排斥很重要,特别是在针对具有新型材料的膜的工业应用时。NF 和 RO 等 MSP 容易结垢,这通常会导致较低的渗透通量和溶质排斥,这可能是由于滤饼增强浓差极化 (CECP) 效应。这篇综述说明了为什么 CECP 效应并不总是导致观察到的 TOrC 被污染膜的拒绝率下降的原因。为了减轻污染,研究人员经常通过掺入纳米粒子来修饰膜表面。这篇综述还试图解释为什么纳米工程膜在工业规模上没有取得突破。最后,深入了解了利用太阳能和风能来驱动能源密集型 MSP 的可能性。重点还在于如何存储低品位能量并将其用于在 FO 模式下回收稀释的汲取溶液。大概是由于蛋糕增强浓度极化(CECP)效应。这篇综述说明了为什么 CECP 效应并不总是导致观察到的 TOrC 被污染膜的拒绝率下降的原因。为了减轻污染,研究人员经常通过掺入纳米粒子来修饰膜表面。这篇综述还试图解释为什么纳米工程膜在工业规模上没有取得突破。最后,深入了解了利用太阳能和风能来驱动能源密集型 MSP 的可能性。重点还在于如何存储低品位能量并将其用于在 FO 模式下回收稀释的汲取溶液。大概是由于蛋糕增强浓度极化(CECP)效应。这篇综述说明了为什么 CECP 效应并不总是导致观察到的 TOrC 被污染膜的拒绝率下降的原因。为了减轻污染,研究人员经常通过掺入纳米粒子来修饰膜表面。这篇综述还试图解释为什么纳米工程膜在工业规模上没有取得突破。最后,深入了解了利用太阳能和风能来驱动能源密集型 MSP 的可能性。重点还在于如何存储低品位能量并将其用于在 FO 模式下回收稀释的汲取溶液。为了减轻污染,研究人员经常通过掺入纳米粒子来修饰膜表面。这篇综述还试图解释为什么纳米工程膜在工业规模上没有取得突破。最后,深入了解了利用太阳能和风能来驱动能源密集型 MSP 的可能性。重点还在于如何存储低品位能量并将其用于在 FO 模式下回收稀释的汲取溶液。为了减轻污染,研究人员经常通过掺入纳米粒子来修饰膜表面。这篇综述还试图解释为什么纳米工程膜在工业规模上没有取得突破。最后,深入了解了利用太阳能和风能来驱动能源密集型 MSP 的可能性。重点还在于如何存储低品位能量并将其用于在 FO 模式下回收稀释的汲取溶液。
更新日期:2022-05-20
down
wechat
bug