当前位置: X-MOL 学术J. Taiwan Inst. Chem. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fe3O4/MnO2 co-doping phenolic resin porous carbon for high performance supercapacitors
Journal of the Taiwan Institute of Chemical Engineers ( IF 5.7 ) Pub Date : 2022-05-27 , DOI: 10.1016/j.jtice.2022.104385
Xiaoxi Dong, Jingyue Wang, Junfeng Miao, Bin Ren, Xing Wang, Lihui Zhang, Zhenfa Liu, Yuelong Xu

Background

Thus, the excellent electrochemical property of PR-Fe@MnO2 composite made it an encouraging electrode material for practical applications like charge storage and in other pseudocapacitors.

Methods

Using phenolic resin (PR) as a carbon source, potassium ferrate (K2FeO4) and manganese acetate (Mn(CH3COO)2·4H2O) as the dopants, a one-step carbonization method was used to prepare a series of Fe3O4 and MnO2 co-doped composites, which are denoted as PR-Fe@MnO2. During high-temperature carbonization (800 °C), partially amorphous carbon forms a multi-layer graphene structure, making PR-Fe@MnO2 exhibit a high degree of graphitization. After doping, the transition metal Mn was investigated theoretically by performing density functional theory calculations.

Significant Findings

The results confirmed that doping of moderate Mn ions in the PR-Fe lattice improved the interactions between OH in the electrolyte and Mn metal center, consequently, the electrical conductivity (19%) of the electrode according to the equivalent series resistance (Rs). The Mn composition also increased the specific area for more electroactive sites and reduced the charge transfer resistance (decreased by 27.7%). As a result, PR-Fe@MnO2–1.5 had the highest specific capacitance of 601 F/g at 1.0 A/g and superior cycling stability (capacitance retention of 97.8% after 10,000 cycles). Furthermore, the assembled PR-Fe@MnO2–1.5//PR-Fe@MnO2–1.5 symmetric supercapacitor provided a specific energy density of 25.7 Wh/kg at a power density of 384.9 W/kg.



中文翻译:

Fe3O4/MnO2共掺杂酚醛树脂多孔碳用于高性能超级电容器

背景

因此,PR-Fe@MnO 2复合材料优异的电化学性能使其成为一种令人鼓舞的电极材料,可用于电荷存储和其他赝电容器等实际应用。

方法

以酚醛树脂(PR)为碳源,高铁酸钾(K 2 FeO 4 )和乙酸锰(Mn(CH 3 COO) 2 ·4H 2 O)为掺杂剂,采用一步碳化法制备了系列Fe 3 O 4和MnO 2共掺杂复合材料,记为PR-Fe@MnO 2。在高温碳化(800℃)过程中,部分无定形碳形成多层石墨烯结构,使得PR-Fe@MnO 2表现出高度的石墨化。掺杂后,通过进行密度泛函理论计算对过渡金属Mn进行了理论研究。

重要发现

结果证实,在 PR-Fe 晶格中掺杂适度的 Mn 离子改善了电解质中 OH -与 Mn 金属中心之间的相互作用,因此,根据等效串联电阻 (R s ),电极的电导率 (19%) )。Mn 成分还增加了更多电活性位点的比面积并降低了电荷转移电阻(降低了 27.7%)。因此,PR-Fe@MnO 2 –1.5 在 1.0 A/g 下具有 601 F/g 的最高比电容和出色的循环稳定性(10,000 次循环后的电容保持率为 97.8%)。此外,组装的 PR-Fe@MnO 2 –1.5//PR-Fe@MnO 2–1.5 对称超级电容器在 384.9 W/kg 的功率密度下提供了 25.7 Wh/kg 的比能量密度。

更新日期:2022-05-28
down
wechat
bug