当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tuning Excited-State Energy Transfer for Light Energy Conversion: A Virtual Issue
ACS Energy Letters ( IF 22.0 ) Pub Date : 2022-05-27 , DOI: 10.1021/acsenergylett.2c01167
Mahesh Hariharan 1, 2 , Prashant Kamat 1, 2
Affiliation  

Nature has been at the forefront of optimizing efficient light energy conversion and energy transduction models in the photosynthetic complex. Inspired by nature, underpinning mechanistic aspects of excited-state energy-transfer processes in assemblies of chromophoric systems, perovskites, and semiconductor materials are of great interest in energy research. However, a comprehensive understanding of the excited-state energy transfer is quintessential for practical implications in photovoltaics and solar fuel generation, which may meet the world’s rising energy need. This virtual issue is a collection of recent research on excited-state energy transfer for light energy conversion published in ACS Energy Letters. The effectual method of molecular-level modification for the fine-tuning of the energy landscape, which can bring about various processes, including energy transfer, charge separation, singlet fission, excimer formation, etc., is one of the promising ways to achieve efficient light energy conversion. (1) The intermixing of donor and acceptor molecules in a photoactive layer to form a bulk heterojunction (BHJ) allows even short-lived excitons to reach the enlarged donor/acceptor interfacial area. (2) Non-fullerene small-molecular acceptors (NFAs) have been reported as impressive candidates for solution-processed bilayer organic photovoltaic (OPV) cells with high performance. (2) The large spectral overlap between the absorption spectra of NFAs and the photoluminescence (PL) spectra of the polymer donor offers a high singlet exciton diffusion length (LD), resulting in long-range Förster resonant energy transfer (FRET) in donor–acceptor bilayer heterojunctions. Consequently, the excitons efficiently diffuse to the donor/acceptor interface of a bilayer structure with an NFA and separate. (2) The emergence of triplet sensitizer materials which undergo efficient triplet energy transfer (TET), like quantum dots (QDs), perovskite nanoparticles/thin films, and new transition-metal-containing sensitizers, has facilitated the revival of molecular upconversion through sensitized triplet–triplet annihilation (TTA-UC) for applications including imaging, solar energy conversion, etc. (3) The suggested quantification of TTA-UC emission is the number of UC photons observed per the number of photons absorbed. (3) There has been significant development in the application of perovskite nanocrystal (NC) sensitizers-assisted molecular triplet generation by TET in photovoltaics. (4) The rate and efficiency of TET are strongly dependent on the size of the NCs, which confirms that the TET proceeds through a Dexter-type process. In addition to the Dexter-type transfer, other mechanisms proposed are surface states and charge transfer (CT; sequential electron/hole transfer)-mediated TET. (4) The structure–property correlations and design strategies for 2D layered metal halide perovskites that showcase enhanced energy transfer to molecular triplet states (Figure 1a) have been reviewed by Lin, Johnson, and co-workers. (5) Photophysical aspects, including luminescence and electronic properties of the materials, are methodically discussed in the article. Mechanistic aspects of exciton transport in solid systems and the subsequent upconversion of the low-energy triplet excitons to high-energy photons have been comprehensively studied by Zhu and co-workers. (6) The enhanced dopant luminescence lifetime observed in Mn-doped lead halide perovskites (CsPbX3: X = Cl, Br, I) has been attributed to an interplay between the charge-transfer and energy-transfer mechanisms, depending on the energy barriers. The CT mechanism dominates in Mn:CsPbCl3 as a result of small energy barriers. (7) The surface-functionalized NCs of CsPbBr3 are also reported to exhibit long-lived delayed luminescence. (8) Figure 1. (a) Triplet sensitization of molecular hybrids after photoexcitation of perovskite leading to phosphorescence. Reprinted with permission from ref (5). Copyright 2021 American Chemical Society. (b) Schematics of the triplet–triplet annihilation photon upconversion (TTA-UC) system comprising QD-BCA and the naphthalene derivative 2,6-di-tert-butylnaphthalene (DTBN). Reprinted with permission from ref (11). Copyright 2022 American Chemical Society. The TET from the NCs to the phenanthrene ligands and the subsequent thermally activated reverse TET cause the emission from the CsPbBr3 NCs to be delayed and long-lived. (8) The emergence of colloidal semiconductor NCs as efficient triplet sensitizers has opened wide applications in photochemical transformations as well as energy harvesting. (9) The light absorption tunability and the long lifetime of molecular triplet states in NCs have been the crucial factors that resulted in its use for photochemical and energy applications. The efficiency limits for singlet fission (SF) solar cells have been theoretically modeled for advanced solar cell applications. The three different processes for transfer of triplet excitons to silicon, namely, charge transfer, Dexter energy transfer, and FRET, have been discussed by Ehrler and co-workers, with calculated efficiency limits for each of the processes along with the different energy loss mechanisms. (10) Uniquely blue-emitting QDs with a ZnSe core and a ZnS shell have been used as molecular triplet sensitizers for upconversion to the ultraviolet region. (11) The TET is reported to occur through an electron-transfer process. The upconversion system consists of biphenylcarboxylic acid (BCA) as the surface ligand which acts as the transmitter and biphenyl and naphthalene derivatives as the emitter (Figure 1b). FRET between two CsPbBr3-based nanoplatelets of predetermined thickness was reported to have high efficiency. (12) The enhancement of acceptor PL and reduction in the donor emission lifetime indicated the FRET between the nanoplatelets. Elucidation of the exciton transport mechanism in CdSe/CdTe core/crown colloidal nanoplatelets revealed near-unity transfer of excitons created at the crown to the CdSe/CdTe interface to form CT excitons. (13) The time for exciton transport from crown to core, at near-band-edge excitation, is observed to increase with crown size. NFA-based OPVs are influenced by energy losses and trade-offs that govern their performance. (14) A trade-off between radiative energy loss, energy loss associated with CT state formation, and non-radiative energy loss has been carefully analyzed to design efficient NFA-based OPVs. The extensions on the donor-conjugated polymer have enhanced the efficiency of hole transfer from NFA to the polymer in a ternary blend organic solar cell. (15) Transient absorption spectroscopy revealed the free charge carrier recycling as a result of suppression of triplet exciton formation from 3CT states by PC71BM. In another polymer donor–NFA blend, the observed radiative charge recombination is due to the repopulation following decay of singlet excitons in the NFA; however, it accounts for less than 1% of the total recombination. (16) The low energy offset of the PM6:Y6 blend indicates the high efficiency of the system as OPVs. The inhomogeneous distribution of dopants in BHJ OPVs inhibits their performance and complicates the mechanistic understanding. (17) Hence, a planar heterojunction was employed to clarify the role of dopant distribution and photovoltaic performance. Development of new materials and methods for efficient energy transfer has resulted in high-performance devices, including light-emitting diodes (LEDs), radiation detectors, etc. Jang and co-workers have fabricated a blended QD-emissive layer (EML)-based LED exhibiting an external quantum efficiency of 18.6% and a maximum luminance of 128 577 cd/m2. (18) The EML is a homogeneous thin film, formed by blending a hole-transporting organic molecule having long alkyl chains, N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-9,9-dioctylfluorene (DOFL-TPD), with InP/ZnSe/ZnS QDs (Figure 2). Efficient energy transfer to QDs and hole injection into the EML was facilitated by the uniform distribution of DOFL-TPD in the blended QD EML without any phase separation. Figure 2. (a) Schematic device illustration, (b) molecular structure of DOFL-TPD (top) and cross-sectional TEM image of QD-LEDs with DOFL-TPD blended QD EML (bottom), and (c) energy diagram of QD-LED comprising DOFL-TPD blended QD EML. Reprinted with permission from ref (18). Copyright 2021 American Chemical Society. An organic X-ray imaging scintillator that could achieve a high X-ray imaging resolution of 135 μm and a low detection limit of 38.7 nGy/s was developed by employing efficient interfacial energy transfer from the CsPbBr3 nanosheet, that acted as an X-ray absorber, to the thermally activated delayed fluorescence (TADF) chromophore. (19) The short interspecies distance and complete spectral overlap between the CsPbBr3 nanosheet and the TADF chromophore instigated the efficient energy transfer and also resulted in the direct harnessing of both singlet and triplet excitons upon X-ray radiation of the TADF chromophore. Lead halide perovskites have also been used for γ-ray detection owing to their high carrier mobility, long lifetime, low defect density, etc. (20) The current scintillators that may compete with conventional inorganic scintillators are single crystals of inorganic perovskite Eu:Cs4CaI6. Metal–organic frameworks (MOFs) are among the prospective supramolecular scaffolds for efficient light energy conversion because of their structural or conceptual synthetic analogy to the natural photosynthetic light-harvesting complexes. (21) Hupp, Deria, and co-workers have reported the “antenna behavior” of chromophore assemblies comprising aligned organic linkers within a zirconium-based MOF, NU-1000. (21) The energy is propagated through FRET, and the corresponding excitons are delocalized over multiple linkers, enabling the movement of energy to four or more linkers per exciton hopping step. An efficient luminescent single perovskite with tunable white light was achieved by incorporating Sb3+ and Bi3+ ions into Cs2NaInCl6 single crystals. (22) The self-trapped excitons in [SbCl6]3– octahedrons generate a broadband blue emission, and the yellow emission results from the Bi3+ doping. Changing the doping ratio offers cold and warm adjustable white light emission, which makes this system a promising candidate for high-performance broadband devices. Colloidal quantum shells are attractive materials due to the spatial separation of the multiple excitons generated, leading to extraordinary improvements to multiexciton (MX) lifetimes and MX quantum yield. (23) Quantum shells find application in various areas, including the development of laser diodes by virtue of the geometry, which promotes a strong repulsion between multiple excitons, enabling an Auger-inactive, single-exciton optical gain regime. The triplet harvesting in the MX-generating SF is hindered by the direct deactivation process of a correlated triplet pair (TT). Investigations in tetracene dimers revealed that conformational flexibility between adjacent tetracene units contributes significantly to the suppressed TT deactivation process through weakened electronic coupling, thus increasing the lifetime of triplets. (24) Khan, Laquai, and co-workers have demonstrated that poly[bis(4-phenyl)-(2,4,6-trimethylphenyl)amine] (PTAA) as a hole-transport layer outperforms nickel oxide owing to the reduced non-radiative recombination, which is indicative of lower interfacial trap state density. (25) Compared to the neat MAPbI3 samples, the ground-state bleach of MAPbI3/PTAA exhibits a faster decay, which is attributed to the extraction of holes to the PTAA transport layer. Reid, Rumbles, and co-workers investigated the dependence of charge yields on the driving force for photoinduced electron transfer in indacenodithiophene NFA-based semiconducting films. These studies revealed that the barrierless charge separation occurs only if the driving force is sufficient to overcome the Coulomb potential. (26) The recent advancements in utilizing the excited-state energy transfer for enhanced light energy conversion demonstrate its potential as an emergent strategy to realize artificial photosynthetic mimics. Excited-state energy transfer offers a unique opportunity to tune the properties of light-harvesting assemblies. A fundamental understanding of various excited processes is the key to designing efficient light energy conversion devices. The papers discussed in this virtual issue offer recent developments to achieve this goal. Views expressed in this Energy Focus are those of the authors and not necessarily the views of the ACS. This article references 26 other publications. This article has not yet been cited by other publications. Figure 1. (a) Triplet sensitization of molecular hybrids after photoexcitation of perovskite leading to phosphorescence. Reprinted with permission from ref (5). Copyright 2021 American Chemical Society. (b) Schematics of the triplet–triplet annihilation photon upconversion (TTA-UC) system comprising QD-BCA and the naphthalene derivative 2,6-di-tert-butylnaphthalene (DTBN). Reprinted with permission from ref (11). Copyright 2022 American Chemical Society. Figure 2. (a) Schematic device illustration, (b) molecular structure of DOFL-TPD (top) and cross-sectional TEM image of QD-LEDs with DOFL-TPD blended QD EML (bottom), and (c) energy diagram of QD-LED comprising DOFL-TPD blended QD EML. Reprinted with permission from ref (18). Copyright 2021 American Chemical Society. This article references 26 other publications.

中文翻译:

调整光能转换的激发态能量转移:一个虚拟问题

自然一直处于优化光合复合体中高效光能转换和能量转导模型的最前沿。受大自然的启发,在发色系统、钙钛矿和半导体材料的组装中激发态能量转移过程的机械方面在能源研究中引起了极大的兴趣。然而,对激发态能量转移的全面了解对于光伏和太阳能燃料发电的实际意义至关重要,这可能会满足世界不断增长的能源需求。这个虚拟问题是最近发表在ACS Energy Letters上的关于光能转换的激发态能量转移研究的集合. 分子水平修饰对能源格局进行微调的有效方法,可以带来各种过程,包括能量转移、电荷分离、单线态裂变、准分子形成等,是实现高效能源景观的有希望的途径之一。光能转换。(1) 供体和受体分子在光敏层中混合形成体异质结 (BHJ),即使是短寿命的激子也能到达扩大的供体/受体界面区域。(2) 非富勒烯小分子受体 (NFA) 已被报道为具有高性能的溶液处理双层有机光伏 (OPV) 电池的令人印象深刻的候选者。L D),导致供体-受体双层异质结中的长程Förster共振能量转移(FRET)。因此,激子有效地扩散到具有 NFA 的双层结构的供体/受体界面并分离。(2) 量子点 (QDs)、钙钛矿纳米颗粒/薄膜和新型含过渡金属敏化剂等可进行高效三重态能量转移 (TET) 的三重态敏化剂材料的出现,促进了通过敏化分子上转换的复兴。三重态-三重态湮没 (TTA-UC) 用于成像、太阳能转换等应用。 (3) TTA-UC 发射的建议量化是每吸收的光子数观察到的 UC 光子数。(3) 钙钛矿纳米晶 (NC) 敏化剂辅助 TET 分子三重态生成在光伏领域的应用取得了重大进展。(4) TET 的速率和效率在很大程度上取决于 NC 的大小,这证实了 TET 通过 Dexter 型过程进行。除了 Dexter 型转移之外,提出的其他机制是表面状态和电荷转移(CT;顺序电子/空穴转移)介导的 TET。(4) Lin、Johnson 及其同事审查了二维层状金属卤化物钙钛矿的结构-性能相关性和设计策略,这些钙钛矿展示了向分子三重态增强的能量转移(图 1a)。(5) 文章有条不紊地讨论了光物理方面,包括材料的发光和电子特性。朱及其同事全面研究了固体系统中激子传输的机制方面以及随后将低能三重态激子上转换为高能光子。(6) 在 Mn 掺杂的卤化铅钙钛矿 (CsPbX) 中观察到增强的掺杂剂发光寿命3:X = Cl、Br、I) 归因于电荷转移和能量转移机制之间的相互作用,具体取决于能垒。由于能量势垒小,CT 机制在 Mn:CsPbCl 3中占主导地位。(7) 据报道,CsPbBr 3的表面功能化 NCs表现出长寿命的延迟发光。(8) 图 1. (a) 钙钛矿光激发导致磷光后分子杂化物的三重态敏化。经参考文献 (5) 许可转载。版权所有 2021 美国化学学会。(b) 由 QD-BCA 和萘衍生物 2,6-二叔组成的三重态-三重态湮没光子上转换 (TTA-UC) 系统示意图-丁基萘 (DTBN)。经参考文献 (11) 许可转载。版权所有 2022 美国化学学会。从 NC 到菲配体的 TET 以及随后的热激活反向 TET 导致 CsPbBr 3的发射NC 将被延迟和长期存在。(8) 胶体半导体 NCs 作为高效的三重态敏化剂的出现在光化学转化和能量收集方面开辟了广泛的应用。(9) NCs 中分子三重态的光吸收可调性和长寿命一直是导致其用于光化学和能源应用的关键因素。单重裂变 (SF) 太阳能电池的效率极限已在理论上为先进的太阳能电池应用建模。Ehrler 及其同事讨论了将三重态激子转移到硅的三种不同过程,即电荷转移、Dexter 能量转移和 FRET,并计算了每个过程的效率限制以及不同的能量损失机制. (10) 具有 ZnSe 核和 ZnS 壳的独特蓝色发射 QD 已被用作分子三重态敏化剂,用于上转换到紫外区。(11) 据报道,TET 是通过电子转移过程发生的。上转换系统由作为发射器的表面配体联苯羧酸 (BCA) 和作为发射器的联苯和萘衍生物组成 (图 1b)。两个 CsPbBr 之间的 FRET3据报道,具有预定厚度的基于纳米片的纳米片具有高效率。(12)受体PL的增强和供体发射寿命的减少表明纳米片之间的FRET。阐明 CdSe/CdTe 核心/冠胶体纳米片中的激子传输机制揭示了在冠处产生的激子接近统一转移到 CdSe/CdTe 界面以形成 CT 激子。(13) 在近带边缘激发下,从冠到核的激子传输时间观察到随着冠尺寸的增加而增加。基于 NFA 的 OPV 受到控制其性能的能量损失和权衡的影响。(14) 仔细分析了辐射能量损失、与 CT 状态形成相关的能量损失和非辐射能量损失之间的权衡,以设计高效的基于 NFA 的 OPV。在三元共轭有机太阳能电池中,供体共轭聚合物上的延伸提高了从 NFA 到聚合物的空穴转移效率。(15) 瞬态吸收光谱显示,由于抑制了三重态激子的形成,导致了自由电荷载流子的再循环。PC 71的3 个CT 状态BM。在另一种聚合物供体-NFA 混合物中,观察到的辐射电荷复合是由于 NFA 中单线态激子衰变后的再填充;但是,它只占总重组的不到 1%。(16) PM6:Y6 混合物的低能量补偿表明系统作为 OPV 的高效率。BHJ OPV中掺杂剂的不均匀分布抑制了它们的性能并使机理理解复杂化。(17) 因此,采用平面异质结来阐明掺杂剂分布和光伏性能的作用。用于高效能量转移的新材料和新方法的开发产生了高性能设备,包括发光二极管 (LED)、辐射探测器等。2 . (18) EML是一种均质薄膜,由具有长烷基链的空穴传输有机分子N,N'-双(3-甲基苯基) -N,N混合而成'-双(苯基)-9,9-二辛基芴(DOFL-TPD),具有 InP/ZnSe/ZnS 量子点(图 2)。DOFL-TPD 在混合 QD EML 中的均匀分布促进了向 QD 的有效能量转移和向 EML 中的空穴注入,而没有任何相分离。图 2. (a) 器件示意图,(b) DOFL-TPD 的分子结构(顶部)和带有 DOFL-TPD 混合 QD EML 的 QD-LED 的横截面 TEM 图像(底部),以及 (c) 能量图QD-LED 包括 DOFL-TPD 混合 QD EML。经参考文献 (18) 许可转载。版权所有 2021 美国化学学会。通过利用 CsPbBr 3的高效界面能量转移,开发了一种有机 X 射线成像闪烁体,可实现 135 μm 的高 X 射线成像分辨率和 38.7 nGy/s 的低检测限纳米片作为 X 射线吸收剂,作用于热激活延迟荧光 (TADF) 生色团。(19) CsPbBr 3纳米片和TADF生色团之间的短的种间距离和完全的光谱重叠激发了有效的能量转移,并且还导致在TADF生色团的X射线辐射下直接利用单重态和三重态激子。由于其高载流子迁移率、长寿命、低缺陷密度等,卤化铅钙钛矿也被用于 γ 射线检测。 (20) 目前可以与传统无机闪烁体竞争的闪烁体是无机钙钛矿 Eu:Cs 的单晶46. 金属有机框架 (MOF) 是用于高效光能转换的潜在超分子支架之一,因为它们在结构或概念上与天然光合捕光复合物相似。(21) Hupp、Deria 和同事报告了在锆基 MOF NU-1000 中包含对齐有机接头的发色团组件的“天线行为”。(21) 能量通过 FRET 传播,并且相应的激子在多个接头上离域,使能量在每个激子跳跃步骤中移动到四个或更多接头。通过将 Sb 3+和 Bi 3+离子掺入 Cs 2 NaInCl 6中,实现了具有可调谐白光的高效发光单钙钛矿单晶。(22) [SbCl 6 ] 3–八面体中的自陷激子产生宽带蓝色发射,而黄色发射是由 Bi 3+引起的兴奋剂。改变掺杂比可提供冷暖可调白光发射,这使得该系统成为高性能宽带设备的有希望的候选者。由于产生的多个激子的空间分离,胶体量子壳是有吸引力的材料,从而显着提高了多激子 (MX) 寿命和 MX 量子产率。(23) 量子壳在各个领域都有应用,包括利用几何形状开发激光二极管,这促进了多个激子之间的强排斥,从而实现了俄歇非活动的单激子光学增益方案。产生 MX 的 SF 中的三重态收获受到相关三重态对 (TT) 的直接失活过程的阻碍。对并四苯二聚体的研究表明,相邻并四苯单元之间的构象灵活性通过减弱电子耦合显着有助于抑制 TT 失活过程,从而增加三联体的寿命。(24) Khan、Laquai 和同事已经证明,聚[双(4-苯基)-(2,4,6-三甲基苯基)胺] (PTAA) 作为空穴传输层的性能优于氧化镍,因为它减少了非辐射复合,这表明较低的界面陷阱态密度。(25) 与整洁的 MAPbI 相比 6-三甲基苯基)胺](PTAA)作为空穴传输层由于减少了非辐射复合而优于氧化镍,这表明较低的界面陷阱态密度。(25) 与整洁的 MAPbI 相比 6-三甲基苯基)胺](PTAA)作为空穴传输层由于减少了非辐射复合而优于氧化镍,这表明较低的界面陷阱态密度。(25) 与整洁的 MAPbI 相比3样品,MAPbI 3的基态漂白剂/PTAA 表现出更快的衰减,这归因于将空穴提取到 PTAA 传输层。Reid、Rumbles 和同事研究了在基于茚并二噻吩 NFA 的半导体薄膜中电荷产率对光致电子转移驱动力的依赖性。这些研究表明,只有当驱动力足以克服库仑势时,才会发生无势垒电荷分离。(26) 利用激发态能量转移增强光能转换的最新进展证明了其作为实现人工光合模拟物的紧急策略的潜力。激发态能量转移为调整光捕获组件的特性提供了独特的机会。对各种激发过程的基本理解是设计高效光能转换装置的关键。本期虚拟期刊中讨论的论文提供了实现这一目标的最新进展。本能源焦点中表达的观点是作者的观点,不一定是 ACS 的观点。本文引用了其他 26 篇出版物。这篇文章尚未被其他出版物引用。图 1. (a) 钙钛矿光激发导致磷光后分子杂化物的三重态敏化。经参考文献 (5) 许可转载。版权所有 2021 美国化学学会。(b) 三重态-三重态湮没光子上转换 (TTA-UC) 系统的示意图,包括 QD-BCA 和萘衍生物 2,6-di- 本期虚拟期刊中讨论的论文提供了实现这一目标的最新进展。本能源焦点中表达的观点是作者的观点,不一定是 ACS 的观点。本文引用了其他 26 篇出版物。这篇文章尚未被其他出版物引用。图 1. (a) 钙钛矿光激发导致磷光后分子杂化物的三重态敏化。经参考文献 (5) 许可转载。版权所有 2021 美国化学学会。(b) 三重态-三重态湮没光子上转换 (TTA-UC) 系统的示意图,包括 QD-BCA 和萘衍生物 2,6-di- 本期虚拟期刊中讨论的论文提供了实现这一目标的最新进展。本能源焦点中表达的观点是作者的观点,不一定是 ACS 的观点。本文引用了其他 26 篇出版物。这篇文章尚未被其他出版物引用。图 1. (a) 钙钛矿光激发导致磷光后分子杂化物的三重态敏化。经参考文献 (5) 许可转载。版权所有 2021 美国化学学会。(b) 三重态-三重态湮没光子上转换 (TTA-UC) 系统的示意图,包括 QD-BCA 和萘衍生物 2,6-di- 这篇文章尚未被其他出版物引用。图 1. (a) 钙钛矿光激发导致磷光后分子杂化物的三重态敏化。经参考文献 (5) 许可转载。版权所有 2021 美国化学学会。(b) 三重态-三重态湮没光子上转换 (TTA-UC) 系统的示意图,包括 QD-BCA 和萘衍生物 2,6-di- 这篇文章尚未被其他出版物引用。图 1. (a) 钙钛矿光激发导致磷光后分子杂化物的三重态敏化。经参考文献 (5) 许可转载。版权所有 2021 美国化学学会。(b) 三重态-三重态湮没光子上转换 (TTA-UC) 系统的示意图,包括 QD-BCA 和萘衍生物 2,6-di-叔丁基萘 (DTBN)。经参考文献 (11) 许可转载。版权所有 2022 美国化学学会。图 2. (a) 器件示意图,(b) DOFL-TPD 的分子结构(顶部)和带有 DOFL-TPD 混合 QD EML 的 QD-LED 的横截面 TEM 图像(底部),以及 (c) 能量图QD-LED 包括 DOFL-TPD 混合 QD EML。经参考文献 (18) 许可转载。版权所有 2021 美国化学学会。本文引用了其他 26 篇出版物。
更新日期:2022-05-27
down
wechat
bug