当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D printed protein-based robotic structures actuated by molecular motor assemblies
Nature Materials ( IF 41.2 ) Pub Date : 2022-05-26 , DOI: 10.1038/s41563-022-01258-6
Haiyang Jia 1 , Johannes Flommersfeld 2, 3 , Michael Heymann 1, 4 , Sven K Vogel 1 , Henri G Franquelim 1 , David B Brückner 2 , Hiromune Eto 1 , Chase P Broedersz 2, 3 , Petra Schwille 1
Affiliation  

Upscaling motor protein activity to perform work in man-made devices has long been an ambitious goal in bionanotechnology. The use of hierarchical motor assemblies, as realized in sarcomeres, has so far been complicated by the challenges of arranging sufficiently high numbers of motor proteins with nanoscopic precision. Here, we describe an alternative approach based on actomyosin cortex-like force production, allowing low complexity motor arrangements in a contractile meshwork that can be coated onto soft objects and locally activated by ATP. The design is reminiscent of a motorized exoskeleton actuating protein-based robotic structures from the outside. It readily supports the connection and assembly of micro-three-dimensional printed modules into larger structures, thereby scaling up mechanical work. We provide an analytical model of force production in these systems and demonstrate the design flexibility by three-dimensional printed units performing complex mechanical tasks, such as microhands and microarms that can grasp and wave following light activation.



中文翻译:

由分子马达组件驱动的 3D 打印基于蛋白质的机器人结构

提高运动蛋白活性以在人造设备中执行工作长期以来一直是生物纳米技术的一个雄心勃勃的目标。迄今为止,由于以纳米级精度排列足够多的运动蛋白的挑战,在肌节中实现的分层运动组件的使用变得复杂。在这里,我们描述了一种基于肌动球蛋白皮质样力产生的替代方法,允许在收缩网络中进行低复杂度的运动安排,该收缩网络可以涂在软物体上并由 ATP 局部激活。该设计让人想起从外部驱动基于蛋白质的机器人结构的机动外骨骼。它可以轻松支持将微型三维打印模块连接和组装成更大的结构,从而扩大机械工作规模。我们提供了这些系统中力产生的分析模型,并通过执行复杂机械任务的三维打印单元展示了设计灵活性,例如可以在光激活后抓取和挥动的微手和微臂。

更新日期:2022-05-27
down
wechat
bug