当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization
Energy Storage Materials ( IF 20.4 ) Pub Date : 2022-05-25 , DOI: 10.1016/j.ensm.2022.05.042
Zheng Bo , Zhesong Huang , Chenxuan Xu , Yucheng Chen , Erka Wu , Jianhua Yan , Kefa Cen , Huachao Yang , Kostya (Ken) Ostrikov

Capacitive deionization (CDI) is one of the most promising energy-efficient technologies for water desalination, however its industrial translation is slow and impeded by limited electrosorption capacity, slow electrosorption rate and poor cycling stability. Herein we address the above challenges by developing and validating a new concept of unimpeded and selective full-cell anion-cation separation using custom-designed anion-kinetics-selective anode and cation-energy-selective cathode. Nanoporous graphene anode enables the selective anion kinetics, while cation selectivity on the functionalized MXene cathode is due to the difference in ion adsorption energy. These mechanisms are validated by electrochemical quartz crystal microbalance measurements. The finely-tuned balance between ion transport and adsorption causes unimpeded ion diffusion, leading to the higher electrosorption rates. These effects are guided by the atomistic and quantum chemistry simulations, and also confirmed experimentally by tuning the pore size of graphene anode and the functionalization of MXene cathode. The fabricated asymmetric CDI cell exhibits superior electrosorption capacity of 49 mg g−1 and high electrosorption rate of 2.92 mg g−1 min−1 in 5000 mg L−1 NaCl solution as well as excellent cycling stability (100 cycles), which are among the best of the current state-of-the-art CDI studies. These results demonstrate the design of advanced electrode materials for the effective control of ion kinetics and energies to achieve selective ion transport, thus providing new insights for a broader range of energy-related applications.



中文翻译:

用于高性能电容去离子的阴离子动力学选择性石墨烯阳极和阳离子能量选择性 MXene 阴极

电容去离子 (CDI) 是最有前途的水淡化节能技术之一,但其工业转化速度缓慢,并且受到电吸附容量有限、电吸附速率慢和循环稳定性差的阻碍。在此,我们通过开发和验证使用定制设计的阴离子动力学选择性阳极和阳离子能量选择性阴极的无阻碍和选择性全电池阴离子阳离子分离的新概念来解决上述挑战。纳米多孔石墨烯阳极能够实现选择性阴离子动力学,而功能化 MXene 阴极上的阳离子选择性是由于离子吸附能的差异。这些机制通过电化学石英晶体微天平测量得到验证。离子传输和吸附之间的微调平衡导致不受阻碍的离子扩散,导致更高的电吸附率。这些效应以原子和量子化学模拟为指导,并通过调整石墨烯阳极的孔径和 MXene 阴极的功能化进行实验证实。制造的不对称 CDI 电池表现出 49 mg g 的优异电吸附能力-1和 2.92 mg g -1  min -1在 5000 mg L -1 NaCl 溶液中的高电吸附速率以及出色的循环稳定性(100 次循环),这是目前最先进的 CDI 中最好的学习。这些结果证明了先进电极材料的设计可有效控制离子动力学和能量以实现选择性离子传输,从而为更广泛的能量相关应用提供新的见解。

更新日期:2022-05-27
down
wechat
bug