当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum interference of identical photons from remote GaAs quantum dots
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2022-05-19 , DOI: 10.1038/s41565-022-01131-2
Liang Zhai 1 , Giang N Nguyen 1 , Clemens Spinnler 1 , Julian Ritzmann 2 , Matthias C Löbl 1 , Andreas D Wieck 2 , Arne Ludwig 2 , Alisa Javadi 1 , Richard J Warburton 1
Affiliation  

Photonic quantum technology provides a viable route to quantum communication1,2, quantum simulation3 and quantum information processing4. Recent progress has seen the realization of boson sampling using 20 single photons3 and quantum key distribution over hundreds of kilometres2. Scaling the complexity requires architectures containing multiple photon sources, photon counters and a large number of indistinguishable single photons. Semiconductor quantum dots are bright and fast sources of coherent single photons5,6,7,8,9. For applications, a roadblock is the poor quantum coherence on interfering single photons created by independent quantum dots10,11. Here we demonstrate two-photon interference with near-unity visibility (93.0 ± 0.8)% using photons from two completely separate GaAs quantum dots. The experiment retains all the emission into the zero phonon line—only the weak phonon sideband is rejected; temporal post-selection is not employed. By exploiting quantum interference, we demonstrate a photonic controlled-not circuit and an entanglement with fidelity of (85.0 ± 1.0)% between photons of different origins. The two-photon interference visibility is high enough that the entanglement fidelity is well above the classical threshold. The high mutual coherence of the photons stems from high-quality materials, diode structure and relatively large quantum dot size. Our results establish a platform—GaAs quantum dots—for creating coherent single photons in a scalable way.



中文翻译:

来自远程 GaAs 量子点的相同光子的量子干涉

光子量子技术为量子通信1,2、量子模拟3和量子信息处理4提供了一条可行的途径。最近的进展已经看到使用 20 个单光子3实现玻色子采样和数百公里2的量子密钥分布。扩展复杂性需要包含多个光子源、光子计数器和大量无法区分的单光子的架构。半导体量子点是明亮而快速的相干单光子源5,6,7,8,9。对于应用而言,障碍是由独立量子点产生的干扰单光子的量子相干性差10,11. 在这里,我们使用来自两个完全独立的 GaAs 量子点的光子演示了具有接近统一可见度 (93.0 ± 0.8)% 的双光子干涉。实验保留了所有进入零声子线的发射——只有弱声子边带被拒绝;不采用临时后选择。通过利用量子干涉,我们展示了光子受控非电路和不同来源光子之间保真度为 (85.0 ± 1.0)% 的纠缠。双光子干涉可见度足够高,以至于纠缠保真度远高于经典阈值。光子的高相干性源于高质量的材料、二极管结构和相对较大的量子点尺寸。我们的结果建立了一个平台——GaAs 量子点——用于以可扩展的方式创建相干单光子。

更新日期:2022-05-20
down
wechat
bug