当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Competitiveness of syngas biomethanation integrated with carbon capture and storage, power-to-gas and biomethane liquefaction services: Techno-economic modeling of process scenarios and evaluation of subsidization requirements
Biomass & Bioenergy ( IF 6 ) Pub Date : 2022-05-18 , DOI: 10.1016/j.biombioe.2022.106475
Lorenzo Menin, Konstantinos Asimakopoulos, Sumesh Sukumara, Niels B.K. Rasmussen, Francesco Patuzzi, Marco Baratieri, Hariklia N. Gavala, Ioannis V. Skiadas

Biomethanation of biomass-derived syngas represents a promising bioenergy conversion technology that can be operated within integrated plants to deliver ancillary services such as carbon capture and storage (CCS), seasonal energy storage and fuel densification. In the present study, we developed a set of techno-economic process models considering syngas biomethanation as a core unit complemented by Power-to-Gas (PtG), pure oxygen compression, CCS, and biomethane liquefaction. Four different plant configurations and five operating modes with biomass inputs ranging between 8.4 and 60.2 MW were investigated overall, indicating biomethane yields between 0.16 and 0.48 m3 kg−1 (dry basis). An energy analysis demonstrated how intensive PtG operation delivers substantially higher biomethane cold gas efficiencies (44.4%) compared to operating modes without electrolysis (30%–34.8%). In fact, a small-scale PtG-biomethanation configuration (S-EL) delivers the lowest biomethane minimum selling price (MSP) of 1.63 € m−3. Under existing biomethane subsidies in Denmark and Italy, S-EL would achieve profitability only under stored electricity costs equivalent to approximately 50% of the current levelized cost of renewable electricity generation in the two countries, combined with maximum biomass costs of 50 and 30 € t−1, respectively. All other configurations suffer from high costs and efficiency limitations and would require subsidies equivalent to 126%–348% of the current natural gas consumer price to reach profitability. The study provides evidence to support an intensification of targeted policies that support multi-service plants, and it highlights the need for access to low electricity prices as well as the urgency for low-cost gasification technologies.



中文翻译:

合成气生物甲烷化与碳捕获和储存、电力制气和生物甲烷液化服务相结合的竞争力:工艺情景的技术经济建模和补贴要求评估

生物质合成气的生物甲烷化代表了一种很有前途的生物能源转换技术,可以在综合工厂内运行,以提供诸如碳捕获和储存 (CCS)、季节性能量储存和燃料致密化等辅助服务。在本研究中,我们开发了一套技术经济过程模型,以合成气生物甲烷化为核心单元,辅以电制气 (PtG)、纯氧压缩、CCS 和生物甲烷液化。总体研究了四种不同的工厂配置和五种运行模式,生物质输入范围在 8.4 和 60.2 MW 之间,表明生物甲烷产量在 0.16 和 0.48 m 3  kg -1之间(干基)。能源分析表明,与没有电解的操作模式(30%–34.8%)相比,密集的 PtG 操作如何提供更高的生物甲烷冷气效率(44.4%)。事实上,小型 PtG 生物甲烷化配置 (S-EL) 提供了 1.63 € m -3的最低生物甲烷最低售价 (MSP) 。在丹麦和意大利现有的生物甲烷补贴下,S-EL 只能在相当于两国当前可再生发电平准化成本的约 50% 的储能成本以及 50 和 30 欧元 t 的最大生物质成本下实现盈利-1, 分别。所有其他配置都受到高成本和效率限制,需要相当于当前天然气消费价格的 126%–348% 的补贴才能实现盈利。该研究提供了支持加强支持多服务工厂的有针对性的政策的证据,并强调了获得低电价的必要性以及低成本气化技术的紧迫性。

更新日期:2022-05-18
down
wechat
bug