当前位置: X-MOL 学术J. Guid. Control Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Information-Based Guidance and Control Architecture for Multi-Spacecraft On-Orbit Inspection
Journal of Guidance, Control, and Dynamics ( IF 2.6 ) Pub Date : 2022-05-16 , DOI: 10.2514/1.g006278
Yashwanth Kumar Nakka 1 , Wolfgang Hönig 1 , Changrak Choi 2 , Alexei Harvard 1 , Amir Rahmani 2 , Soon-Jo Chung 1
Affiliation  

Inspection or mapping of a target spacecraft in a low Earth orbit using multiple observer spacecraft in stable passive relative orbits (PROs) is a key enabling technology for future space missions. Our guidance and control architecture uses an information gain approach to directly consider the tradeoff between gathered data and fuel/energy cost. The architecture has four components: information estimation, spacecraft’s absolute and relative state estimation, motion planning for relative orbit initialization and reconfiguration, and relative orbit control. The information estimation quantifies the information gain during inspection of a spacecraft, given past and potential future poses of all spacecraft. The estimated information gain is a crucial input to the motion planner, which computes PROs and reconfiguration strategies for each observer to maximize the information gain from distributed observations of the target spacecraft. The resulting motion trajectories jointly consider observational coverage of the target spacecraft and fuel/energy cost. For the PRO trajectories, a fuel-optimal attitude trajectory that minimizes rest-to-rest energy for each observer to inspect the target spacecraft is designed. The validation on a mission simulation to visually inspect the target spacecraft and on a three-degree-of-freedom robotic spacecraft dynamics simulator testbed demonstrates the effectiveness and versatility of our approach.



中文翻译:

用于多航天器在轨检查的基于信息的制导和控制架构

在稳定的被动相对轨道 (PROs) 上使用多个观测航天器对近地轨道上的目标航天器进行检查或测绘是未来太空任务的关键使能技术。我们的制导和控制架构使用信息获取方法来直接考虑收集的数据和燃料/能源成本之间的权衡。该架构有四个组成部分:信息估计、航天器的绝对和相对状态估计、相对轨道初始化和重新配置的运动规划以及相对轨道控制。给定所有航天器过去和潜在的未来姿态,信息估计量化了航天器检查期间的信息增益。估计的信息增益是运动规划器的关键输入,它为每个观察者计算 ​​PRO 和重新配置策略,以最大限度地从目标航天器的分布式观察中获得信息。由此产生的运动轨迹共同考虑了目标航天器的观测覆盖范围和燃料/能源成本。对于 PRO 轨迹,设计了一个燃料优化的姿态轨迹,可以最大限度地减少每个观察者检查目标航天器的静止到静止的能量。对目视检查目标航天器的任务模拟和三自由度机器人航天器动力学模拟器试验台的验证证明了我们方法的有效性和多功能性。由此产生的运动轨迹共同考虑了目标航天器的观测覆盖范围和燃料/能源成本。对于 PRO 轨迹,设计了一个燃料优化的姿态轨迹,可以最大限度地减少每个观察者检查目标航天器的静止到静止的能量。对目视检查目标航天器的任务模拟和三自由度机器人航天器动力学模拟器试验台的验证证明了我们方法的有效性和多功能性。由此产生的运动轨迹共同考虑了目标航天器的观测覆盖范围和燃料/能源成本。对于 PRO 轨迹,设计了一个燃料优化的姿态轨迹,可以最大限度地减少每个观察者检查目标航天器的静止到静止的能量。对目视检查目标航天器的任务模拟和三自由度机器人航天器动力学模拟器试验台的验证证明了我们方法的有效性和多功能性。

更新日期:2022-05-16
down
wechat
bug