当前位置: X-MOL 学术Fract. Calc. Appl. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exterior controllability properties for a fractional Moore–Gibson–Thompson equation
Fractional Calculus and Applied Analysis ( IF 3 ) Pub Date : 2022-05-13 , DOI: 10.1007/s13540-022-00018-2
Carlos Lizama , Mahamadi Warma , Sebastián Zamorano

The three concepts of exact, null and approximate controllabilities are analyzed from the exterior of the Moore–Gibson–Thompson equation associated with the fractional Laplace operator subject to the nonhomogeneous Dirichlet type exterior condition. Assuming that \(b>0\) and \(\alpha -\frac{\tau c^2}{b}>0\), we show that if \(0<s<1\) and \(\varOmega \subset {\mathbb {R}}^N\) (\(N\ge 1\)) is a bounded domain with a Lipschitz continuous boundary \(\partial \varOmega \), then there is no control function g such that the following system

$$\begin{aligned} {\left\{ \begin{array}{ll} \tau u_{ttt} + \alpha u_{tt}+c^2(-\varDelta )^{s} u + b(-\varDelta )^{s} u_{t}=0 &{} \text{ in } \; \varOmega \times (0,T),\\ u=g\chi _{{\mathcal {O}}} &{} \text{ in } \; ({\mathbb {R}}^N\setminus \varOmega )\times (0,T) ,\\ u(\cdot ,0) = u_0, u_t(\cdot ,0) = u_1, u_{tt}(\cdot ,0)=u_2 &{} \text{ in } \; \varOmega , \end{array}\right. } \end{aligned}$$

is exactly or null controllable in time \(T>0\). However, we prove that for \(0<s<1\), the system is approximately controllable for every \(g\in H^1((0,T);L^{2}({\mathcal {O}}))\), where \(\mathcal O\subset {\mathbb {R}}^N\setminus {\overline{\varOmega }}\) is an arbitrary non-empty open set.



中文翻译:

分数 Moore-Gibson-Thompson 方程的外部可控性属性

从摩尔-吉布森-汤普森方程的外部分析了精确可控性、零可控性和近似可控性三个概念,该方程与非齐次狄利克雷型外部条件下的分数拉普拉斯算子相关。假设\(b>0\)\(\alpha -\frac{\tau c^2}{b}>0\),我们证明如果\(0<s<1\)\(\varOmega \subset {\mathbb {R}}^N\) ( \(N\ge 1\) ) 是具有 Lipschitz 连续边界\(\partial \varOmega \)的有界域,则不存在控制函数g使得以下系统

$$\begin{对齐} {\left\{ \begin{array}{ll} \tau u_{ttt} + \alpha u_{tt}+c^2(-\varDelta )^{s} u + b( -\varDelta )^{s} u_{t}=0 &{} \text{ in } \; \varOmega \times (0,T),\\ u=g\chi _{{\mathcal {O}}} &{} \text{ in } \; ({\mathbb {R}}^N\setminus \varOmega )\times (0,T) ,\\ u(\cdot ,0) = u_0, u_t(\cdot ,0) = u_1, u_{tt}( \cdot ,0)=u_2 &{} \text{ in } \; \varOmega , \end{array}\right。} \end{对齐}$$

在时间\(T>0\)上是完全可控的或为空可控的。然而,我们证明对于\(0<s<1\),系统对于每个\(g\in H^1((0,T);L^{2}({\mathcal {O} }))\),其中\(\mathcal O\subset {\mathbb {R}}^N\setminus {\overline{\varOmega }}\)是任意非空开集。

更新日期:2022-05-13
down
wechat
bug